Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (177)
  • Open Access


    An Experimental Study on Enhancing Cooling Rates of Low Thermal Conductivity Fluids Using Liquid Metals

    S.-A. B. Al Omari1,2, E. Elnajjar1

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.2, pp. 91-109, 2013, DOI:10.3970/fdmp.2013.009.091

    Abstract In a previous numerical study (Al Omari, Int. Communication in Heat and Mass Transfer, 2011) the heat transfer enhancement between two immiscible liquids with clear disparity in thermal conductivity such as water and a liquid metal (attained by co- flowing them in a direct contact manner alongside each other in mini channel) was demonstrated. The present work includes preliminary experimental results that support those numerical findings. Two immiscible liquids (hot water and liquid gallium) are allowed experimentally to exchange heat (under noflow conditions) in a stationary metallic cup where they are put in direct contact. The experimental results confirm the… More >

  • Open Access


    CFD Simulation of Magnetohydrodynamic Flow of a Liquid- Metal Galinstan Fluid in Circular Pipes

    E. Gedik1, H.Kurt2, Z.Recebli1

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.1, pp. 23-33, 2013, DOI:10.3970/fdmp.2013.009.023

    Abstract In this paper, the steady, laminar, incompressible viscous flow of an electrically conducting liquid-metal fluid is investigated numerically in a circular non-conducting pipe. The considered work fluid is Galinstan (GaInSn, i.e. Gallium-Indium-Tin). Such a liquid metal is subjected to a constant pressure gradient along the axial direction and a uniform transverse magnetic field in the spanwise direction. Numerical simulations are performed by means of the Fluent commercial software (used to solve the governing three dimensional fluid dynamics and electromagnetic field partial differential equations iteratively). The magnetic field induction, B, takes values between 0 and 1.5 T with a 0.5 T… More >

  • Open Access


    An Experimental Study of Two-Phase Flow in Porous Media with Measurement of Relative Permeability

    N. Labed1, L. Bennamoun2, J.P. Fohr3

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.4, pp. 423-436, 2012, DOI:10.3970/fdmp.2012.008.423

    Abstract Intrinsic and relative permeability are indispensable parameters for performing transfers in porous media. In this paper, the conception and ensuing exploitation of a new testing ground for measuring the relative permeability of water and nitrogen are presented. The experimental work was elaborated in the Laboratory of Thermal Studies in Poitiers, (France) where brick samples were used to verify the performance of the proposed testing strategy. The results prove the existence of several stages during the drainage and the imbibitions. In particular, the three stages observed for the case of gas permeability reduce to only two steps for liquid permeability. Comparison… More >

  • Open Access


    Enhanced Heat Transfer by Unipolar Injection of Electric Charges in Differentially Heated Dielectric Liquid Layer

    Walid Hassen1, Mohamed Naceur Borjini2, Habib Ben Aissia1

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.4, pp. 381-396, 2012, DOI:10.3970/fdmp.2012.008.381

    Abstract In this work we consider the problem related to the electro-thermo-convection of a dielectric fluid in a rectangular enclosure placed between two electrodes. This layer is subjected simultaneously to the injection of electric charges and to a thermal gradient. The influence of the electric Rayleigh number (200 - 1000) on the structure of the flow, the density of electric charge and heat transfer is investigated. An oscillatory flow is observed and discussed in detail. More >

  • Open Access


    Nonlinear Development of Interfacial Instability in a Thin Two-Layer Liquid Film in the Presence of Van-Der-Waals Interactions

    A. A. Nepomnyashchy1,2, I. B. Simanovskii1

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.3, pp. 185-198, 2008, DOI:10.3970/fdmp.2008.004.185

    Abstract The development of instabilities under the joint action of the van der Waals forces and Marangoni stresses in a two-layer film on a heated or cooled substrate is considered. It is found that heating from below leads to the acceleration of the decomposition, decrease of the characteristic lateral size of structures, and the increase of the droplets heights. Heating from above leads to slowing down the instability rate and eventually to a complete suppression of the instability. More >

  • Open Access


    A Deformation and a Break of Hanging Thin Film under Microgravity Conditions

    A. Ovcharova1, N.Stankous2

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.4, pp. 349-356, 2007, DOI:10.3970/fdmp.2007.003.349

    Abstract We consider a deformation of a thin film which is hanging between two solid flat walls under thermal load action. A two-dimensional model is applied to describe the motion of thin layers of viscous nonisothermal liquid under microgravity conditions. The model is based on the Navier-Stokes equations. A numerical analysis of the influence of thermal loads on the deformation and break of freely hanging thin films has been carried out. The mutual influence of capillary and thermo-capillary forces on thin film free surface position has been shown. The results of model problem solutions are presented. More >

  • Open Access


    Effect of Large Eccentric Rotation on the Stability of Liquid Bridges

    A. Laverón-Simavilla1, V. Lapuerta1, J. Rodríguez1, M. A. González1

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.4, pp. 339-348, 2007, DOI:10.3970/fdmp.2007.003.339

    Abstract A cylindrical liquid bridge supported between two circular-shaped disks in isorotation is considered. The effect of an offset between the rotation axis and the axis of the two supporting disks (eccentricity) on the stability of the liquid bridge is investigated. In a previous work a numerical method used to determine the stability limit for different values of eccentricity was validated comparing these results with analytical and experimental results for small eccentricity values, recovering the same behavior. In this work we use the numerical method to extend the analysis to large values of the eccentricity, finding a change in the bifurcation… More >

  • Open Access


    Axially Running Wave in Liquid Bridge

    D.E. Melnikov1, V.M. Shevtsova2

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.4, pp. 329-338, 2007, DOI:10.3970/fdmp.2007.003.329

    Abstract Thermocapillary convection in a long vertical liquid column (called liquid bridge) subjected to heating from above is considered for a three-dimensional Boussinesq fluid. The problem is solved numerically via finite-volume method. Full system of three dimensional Navier-Stokes equations coupled with the energy equation is solved for an incompressible fluid. Instability sets in through a wave propagating in axial direction with zero azimuthal wave number, which is a unique stable solution over a wide range of supercritical heating. Further increasing the applied temperature difference results in bifurcation of a second wave traveling azimuthally with a slightly higher frequency. The two waves… More >

  • Open Access


    Instabilities and Pattern Formation in Thermocapillary Liquid Pools

    U. Schoisswohl1, H. C. Kuhlmann2

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.4, pp. 317-328, 2007, DOI:10.3970/fdmp.2007.003.317

    Abstract The flow in thermocapillary liquid pools heated or cooled from above can exhibit various flow patterns depending on the thermal conditions and the geometrical constraints. This pattern formation and the respective physical mechanisms are studied numerically by means of a linear-stability analysis. We focus on the transition from the steady axisymmetric to a three-dimensional flow. More >

  • Open Access


    Solid/Liquid Phase Change: Recent Studies and Models

    R. Prud’homme1, M. El Ganaoui2

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.2, pp. 161-172, 2007, DOI:10.3970/fdmp.2007.003.161

    Abstract Some problems related to solid/liquid phase change are presented. Attention is focused on interface modeling for numerical analysis and one-dimensional directional growing and melting. Microgravity relevance of some situations is emphasized. It is shown, in particular, that in some circumstances melting is not the simple reversal of crystal growth due to some (still poorly known) phenomena (nucleation and growth of liquid droplets in the bulk, solid and liquid dendrites due to a morphological instability of the phase boundary). Relevant mathematical models are discussed and described (to a certain extent) for analysis and/or characterization of these phenomena when they are disjoint… More >

Displaying 161-170 on page 17 of 177. Per Page