Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,007)
  • Open Access

    ARTICLE

    Support Vector Machine Based Handwritten Hindi Character Recognition and Summarization

    Sunil Dhankhar1,*, Mukesh Kumar Gupta1, Fida Hussain Memon2,3, Surbhi Bhatia4, Pankaj Dadheech1, Arwa Mashat5

    Computer Systems Science and Engineering, Vol.43, No.1, pp. 397-412, 2022, DOI:10.32604/csse.2022.024059 - 23 March 2022

    Abstract In today’s digital era, the text may be in form of images. This research aims to deal with the problem by recognizing such text and utilizing the support vector machine (SVM). A lot of work has been done on the English language for handwritten character recognition but very less work on the under-resourced Hindi language. A method is developed for identifying Hindi language characters that use morphology, edge detection, histograms of oriented gradients (HOG), and SVM classes for summary creation. SVM rank employs the summary to extract essential phrases based on paragraph position, phrase position,… More >

  • Open Access

    ARTICLE

    Bayes Theorem Based Virtual Machine Scheduling for Optimal Energy Consumption

    R. Swathy*, B. Vinayagasundaram

    Computer Systems Science and Engineering, Vol.43, No.1, pp. 159-174, 2022, DOI:10.32604/csse.2022.023706 - 23 March 2022

    Abstract This paper proposes an algorithm for scheduling Virtual Machines (VM) with energy saving strategies in the physical servers of cloud data centers. Energy saving strategy along with a solution for productive resource utilization for VM deployment in cloud data centers is modeled by a combination of “Virtual Machine Scheduling using Bayes Theorem” algorithm (VMSBT) and Virtual Machine Migration (VMMIG) algorithm. It is shown that the overall data center’s consumption of energy is minimized with a combination of VMSBT algorithm and Virtual Machine Migration (VMMIG) algorithm. Virtual machine migration between the active physical servers in the… More >

  • Open Access

    ARTICLE

    A Sensitive Wavebands Identification System for Smart Farming

    M. Kavitha*, M. Sujaritha

    Computer Systems Science and Engineering, Vol.43, No.1, pp. 245-257, 2022, DOI:10.32604/csse.2022.023320 - 23 March 2022

    Abstract Sensing the content of macronutrients in the agricultural soil is an essential task in precision agriculture. It helps the farmers in the optimal use of fertilizers. It reduces the cost of food production and also the negative environmental impacts on atmosphere and water bodies due to indiscriminate dosage of fertilizers. The traditional chemical-based laboratory soil analysis methods do not serve the purpose as they are hardly suitable for site specific soil management. Moreover, the spectral range used in the chemical-based laboratory soil analysis may be of 350–2500 nm, which leads to redundancy and confusion. Developing sensors… More >

  • Open Access

    ARTICLE

    An Efficient Stabbing Based Intrusion Detection Framework for Sensor Networks

    A. Arivazhagi1,*, S. Raja Kumar2

    Computer Systems Science and Engineering, Vol.43, No.1, pp. 141-157, 2022, DOI:10.32604/csse.2022.021851 - 23 March 2022

    Abstract Intelligent Intrusion Detection System (IIDS) for networks provide a resourceful solution to network security than conventional intrusion defence mechanisms like a firewall. The efficiency of IIDS highly relies on the algorithm performance. The enhancements towards these methods are utilized to enhance the classification accuracy and diminish the testing and training time of these algorithms. Here, a novel and intelligent learning approach are known as the stabbing of intrusion with learning framework (SILF), is proposed to learn the attack features and reduce the dimensionality. It also reduces the testing and training time effectively and enhances Linear… More >

  • Open Access

    ARTICLE

    Detection of Parkinson’s Disease with Multiple Feature Extraction Models and Darknet CNN Classification

    G. Prema Arokia Mary1,*, N. Suganthi2

    Computer Systems Science and Engineering, Vol.43, No.1, pp. 333-345, 2022, DOI:10.32604/csse.2022.021164 - 23 March 2022

    Abstract Parkinson’s disease (PD) is a neurodegenerative disease in the central nervous system. Recently, more researches have been conducted in the determination of PD prediction which is really a challenging task. Due to the disorders in the central nervous system, the syndromes like off sleep, speech disorders, olfactory and autonomic dysfunction, sensory disorder symptoms will occur. The earliest diagnosing of PD is very challenging among the doctors community. There are techniques that are available in order to predict PD using symptoms and disorder measurement. It helps to save a million lives of future by early prediction.… More >

  • Open Access

    ARTICLE

    Two-Machine Hybrid Flow-Shop Problems in Shared Manufacturing

    Qi Wei*, Yong Wu

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 1125-1146, 2022, DOI:10.32604/cmes.2022.019754 - 14 March 2022

    Abstract In the “shared manufacturing” environment, based on fairness, shared manufacturing platforms often require manufacturing service enterprises to arrange production according to the principle of “order first, finish first” which leads to a series of scheduling problems with fixed processing sequences. In this paper, two two-machine hybrid flow-shop problems with fixed processing sequences are studied. Each job has two tasks. The first task is flexible, which can be processed on either of the two machines, and the second task must be processed on the second machine after the first task is completed. We consider two objective… More >

  • Open Access

    REVIEW

    Sorghum: Nutritional Factors, Bioactive Compounds, Pharmaceutical and Application in Food Systems: A Review

    Heba I. Mohamed1,*, Eman M. Fawzi1, Abdul Basit2, Kaleemullah3, Rafiq Lone4, Mahmoud R. Sofy5

    Phyton-International Journal of Experimental Botany, Vol.91, No.7, pp. 1303-1325, 2022, DOI:10.32604/phyton.2022.020642 - 14 March 2022

    Abstract After wheat, rice, maize, and barley, sorghum is the fifth most widely grown cereal on the planet. Due to its high production, drought resistance, and heat tolerance, this crop is replacing maize in some areas. Sorghum is available in a variety of colors, including cream, lemon-yellow, red, and even black. The principal grain anatomical components are pericarp, germ or embryo and endosperm. This review provides an overview of key sorghum grain components, including starches, fiber, proteins, lipids, and vitamins. Also, we summarized phenolic compounds, flavonoids, tannins, carotenoids, vitamin E, amines, Policosanols and Phytosterols in sorghum… More >

  • Open Access

    ARTICLE

    A Blockchain-Based Architecture for Enabling Cybersecurity in the Internet-of-Critical Infrastructures

    Mahmoud Ragab1,2,3,*, Ali Altalbe1

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1579-1592, 2022, DOI:10.32604/cmc.2022.025828 - 24 February 2022

    Abstract Due to the drastic increase in the number of critical infrastructures like nuclear plants, industrial control systems (ICS), transportation, it becomes highly vulnerable to several attacks. They become the major targets of cyberattacks due to the increase in number of interconnections with other networks. Several research works have focused on the design of intrusion detection systems (IDS) using machine learning (ML) and deep learning (DL) models. At the same time, Blockchain (BC) technology can be applied to improve the security level. In order to resolve the security issues that exist in the critical infrastructures and… More >

  • Open Access

    ARTICLE

    Machine Learning Empowered Electricity Consumption Prediction

    Maissa A. Al Metrik*, Dhiaa A. Musleh

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1427-1444, 2022, DOI:10.32604/cmc.2022.025722 - 24 February 2022

    Abstract Electricity, being the most efficient secondary energy, contributes for a larger proportion of overall energy usage. Due to a lack of storage for energy resources, over supply will result in energy dissipation and substantial investment waste. Accurate electricity consumption prediction is vital because it allows for the preparation of potential power generation systems to satisfy the growing demands for electrical energy as well as: smart distributed grids, assessing the degree of socioeconomic growth, distributed system design, tariff plans, demand-side management, power generation planning, and providing electricity supply stability by balancing the amount of electricity produced… More >

  • Open Access

    ARTICLE

    Cyber Security Analysis and Evaluation for Intrusion Detection Systems

    Yoosef B. Abushark1, Asif Irshad Khan1,*, Fawaz Alsolami1, Abdulmohsen Almalawi1, Md Mottahir Alam2, Alka Agrawal3, Rajeev Kumar4, Raees Ahmad Khan3

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1765-1783, 2022, DOI:10.32604/cmc.2022.025604 - 24 February 2022

    Abstract Machine learning is a technique that is widely employed in both the academic and industrial sectors all over the world. Machine learning algorithms that are intuitive can analyse risks and respond swiftly to breaches and security issues. It is crucial in offering a proactive security system in the field of cybersecurity. In real time, cybersecurity protects information, information systems, and networks from intruders. In the recent decade, several assessments on security and privacy estimates have noted a rapid growth in both the incidence and quantity of cybersecurity breaches. At an increasing rate, intruders are breaching… More >

Displaying 1241-1250 on page 125 of 2007. Per Page