Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,477)
  • Open Access

    ARTICLE

    A New Discrete-Layer Finite Element for Electromechanically Coupled Analyses of Piezoelectric Adaptive Composite Structures

    M. Al-Ajmi1, A. Benjeddou2

    CMC-Computers, Materials & Continua, Vol.23, No.3, pp. 265-286, 2011, DOI:10.3970/cmc.2011.023.265

    Abstract A new discrete layer finite element (DLFE) is presented for electro-mechanically coupled analyses of moderately thick piezoelectric adaptive composite plates. The retained kinematics is based on layer-wise first-order shear deformation theory, and considers the plies top and bottom surfaces in-plane displacements and the plate transverse deflection as mechanical unknowns. The former are assumed in-plane Lagrange linear, while the latter is assumed in-plane full (Lagrange) quadratic; this results in a nine nodes quadrangular (Q9) DLFE. The latter is validated in free-vibrations, first numerically against ANSYS three-dimensional piezoelectric finite elements for a cantilever moderately thick aluminum plate with two co-localized piezoceramic patches,… More >

  • Open Access

    ARTICLE

    Modeling of Effective Properties of Multiphase Magnetoelectroelastic Heterogeneous Materials

    A. Bakkali1, L. Azrar1,2, N. Fakri1

    CMC-Computers, Materials & Continua, Vol.23, No.3, pp. 201-232, 2011, DOI:10.3970/cmc.2011.023.201

    Abstract In this paper an N-phase Incremental Self Consistent model is developed for magnetoelectroelastic composites as well as the N-phase Mori-Tanaka and classical Self Consistent. Our aim here is to circumvent the limitation of the Self Consistent predictions for some coupling effective properties at certain inclusion volume fractions. The anomalies of the SC estimates are more drastic when the void inclusions are considered. The mathematical modeling is based on the heterogeneous inclusion problem of Eshelby which leads to an expression for the strain-electric-magnetic field related by integral equations. The effective N-phase magnetoelectroelastic moduli are expressed as a function of magnetoelectroelastic concentration… More >

  • Open Access

    ARTICLE

    Effect of Electric Field on the Response of Clamped-FreeMagnetostrictive/Piezoelectric/Magnetostrictive Laminates

    Kotaro Mori1, Fumio Narita1, Yasuhide Shindo1

    CMC-Computers, Materials & Continua, Vol.23, No.3, pp. 187-200, 2011, DOI:10.3970/cmc.2011.023.187

    Abstract This work deals with the response of clamped-free magnetostrictive/piezoelectric/magnetostrictive laminates under electric field both numerically and experimentally. The laminate is fabricated using two magnetostrictive Terfenol-D layers and a soft piezoelectric PZT layer. Easy axis of Terfenol-D layers is length direction, while the polarization of PZT layer is the thickness direction. The magnetostriction of the Terfenol-D layers bonded to the upper and lower surfaces of the PZT layer is first measured. Next, a nonlinear finite element analysis is employed to evaluate the second-order magnetoelastic constants in the Terfenol-D layers bonded to the PZT layer using measured data. The induced magnetic field… More >

  • Open Access

    ARTICLE

    Nonlinear Compression Behavior of Warp-Knitted Spacer Fabric: Effect of Sandwich Structure

    Xiaonan Hou1, Hong Hu1, Yanping Liu1, Vadim Silberschmidt2

    CMC-Computers, Materials & Continua, Vol.23, No.2, pp. 119-134, 2011, DOI:10.3970/cmc.2011.023.119

    Abstract Compressibility of warp-knitted spacer fabrics is one of their important mechanical properties with regard to many special applications such as body protection, cushion and mattresses. Due to specific structural features of the fabric and a non-linear mechanical behavior of monofilaments, the compression properties of this kind of fabrics are very complicated. Although several studies have been performed to investigate their compression behavior, its mechanism has not well been understood yet. This work is concerned with a study of compression mechanism of a selected warp-knitted spacer fabric with a given sandwich structure. Both experimental and numerical methods are used to study… More >

  • Open Access

    ARTICLE

    Study of Poisson Ratios of Single-Walled Carbon Nanotubes based on an Improved Molecular Structural Mechanics Model

    P. Zhao1, G. Shi1,2

    CMC-Computers, Materials & Continua, Vol.22, No.2, pp. 147-168, 2011, DOI:10.3970/cmc.2011.022.147

    Abstract The Poisson ratio is a very important mechanical parameter for both single-walled carbon nanotubes (SWCNTs) and graphene. But, the Poisson ratios of SWCNTs and graphene can not be determined by the direct measurement on the nanoscale specimen, and Poisson ratios of SWCNTs and graphene predicted by different models vary in a huge range. An improved molecular structural mechanics model, where the bond angle variations are modeled by the flexible connections of framed structures, is employed in this paper to predict the Poisson ratios of SWCNTs and monolayer graphene sheets. The present results indicate that the Poisson ratios of both SWCNTs… More >

  • Open Access

    ARTICLE

    Fire Safety Analysis of Plastic Steel Frames

    Rong-gang Zhang1,2, Hong-tao Zhang3 , Yu-xing Bai3, Jian-ling Gao3, Lai-yong Zhang2 , Bing-ye Xu1

    CMC-Computers, Materials & Continua, Vol.20, No.3, pp. 243-250, 2010, DOI:10.3970/cmc.2010.020.243

    Abstract Based on the upper bound theorem, the fire resistance is studied using the combination of element collapse mechanisms of steel frames, where the element collapse mechanisms are automatically determined from independent mechanisms. The fire limit load is calculated by solving a nonlinear mathematical programming. The computing procedure is programmed by FORTRAN language. Results show that this method is useful to find the collapse mechanism with the lowest fire limit load, which can provide a theoretical and practical way for the fire design of steel frame structure. More >

  • Open Access

    ARTICLE

    The Molecular Dynamic Finite Element Method (MDFEM)

    Lutz Nasdala1 , Andreas Kempe1 and Raimund Rolfes1

    CMC-Computers, Materials & Continua, Vol.19, No.1, pp. 57-104, 2010, DOI:10.3970/cmc.2010.019.057

    Abstract In order to understand the underlying mechanisms of inelastic material behavior and nonlinear surface interactions, which can be observed on macroscale as damping, softening, fracture, delamination, frictional contact etc., it is necessary to examine the molecular scale. Force fields can be applied to simulate the rearrangement of chemical and physical bonds. However, a simulation of the atomic interactions is very costly so that classical molecular dynamics (MD) is restricted to structures containing a low number of atoms such as carbon nanotubes. The objective of this paper is to show how MD simulations can be integrated into the finite element method… More >

  • Open Access

    ARTICLE

    Pressure-Force Transformation for Transient Wear Simulation in Two-Dimensional Sliding Contacts

    Chen Y J1,2, Huber N2,3

    CMC-Computers, Materials & Continua, Vol.16, No.1, pp. 1-24, 2010, DOI:10.3970/cmc.2010.016.001

    Abstract An efficient wear integration algorithm is crucial for the simulation of wear in complex transient contact situations. By rewriting Archard's wear law for two dimensional problems, the wear integration can be replaced by the total contact force. This avoids highly resolved simulations in time and space, so that the proposed method allows a significant acceleration of wear simulations. All quantities, including the average contact velocity, slip rate and total contact force, which are required for the pressure-force transformation, can be determined from geometric and motion analysis, or alternatively, from Finite Element simulations. The proposed CForce method has been implemented into… More >

  • Open Access

    ARTICLE

    Study of Deformation Mechanisms in Titanium by Interrupted Rolling and Channel Die Compression Tests

    Lei Bao1,2, Christophe Schuman1, Jean-sébastien Lecomte1, Marie-Jeanne Philippe1, Xiang Zhao2, Liang Zuo2, Claude Esling1

    CMC-Computers, Materials & Continua, Vol.15, No.2, pp. 113-128, 2010, DOI:10.3970/cmc.2010.015.113

    Abstract The mechanisms of small plastic deformation of titanium (T40) during cold rolling and channel die compression by means of "interrupted in situ" EBSD orientation measurements were studied. These interrupted EBSD orientation measurements allow to determine the rotation flow field which leads to the development of the crystallographic texture during the plastic deformation. Results show that during rolling, tension twins and compression twins occur and various glide systems are activated, the number of grains being larger with twins than with slip traces. In channel die compression, only tension twins are observed in some grains, whereas slip traces can be spotted in… More >

  • Open Access

    ARTICLE

    A Phenomenological Theory and Numerical Procedure for Chemo-Mechanical Coupling Behavior of Hydrogel

    Q. S. Yang1, B. S. Liu, L. T. Meng

    CMC-Computers, Materials & Continua, Vol.12, No.1, pp. 39-56, 2009, DOI:10.3970/cmc.2009.012.039

    Abstract Coupling and interaction of multi-physical fields exist in hydrogel consisting of a fluid and a solid under external stimulus. In this paper, a phenomenological theory for chemo-mechanical coupling behavior and finite element formulation are developed, based on the thermodynamic laws. The free energy function is constructed and used to derive the constitutive equations and governing equations for a linear coupling system including a chemical effect. Equivalent integral forms of the governing equations and coupled finite element equations are obtained by a variational principle. Numerical examples demonstrate the interaction of chemical and mechanical effects of hydrogel under external force loadings and… More >

Displaying 1461-1470 on page 147 of 1477. Per Page