Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (49)
  • Open Access

    ARTICLE

    Anti-Jamming Null Space Projection Beamforming Based on Symbiotic Radio

    Baofeng Ji1,2,3,4,*, Yifan Liu1,2,3,4, Tingpeng Li1, Ling Xing2, Weixing Wang2, Shahid Mumtaz5, Xiaolong Shang6, Wanying Liu2, Congzheng Han4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 679-689, 2024, DOI:10.32604/cmes.2023.028667

    Abstract With the development of information technology, more and more devices are connected to the Internet through wireless communication to complete data interconnection. Due to the broadcast characteristics of wireless channels, wireless networks have suffered more and more malicious attacks. Physical layer security has received extensive attention from industry and academia. MIMO is considered to be one of the most important technologies related to physical layer security. Through beamforming technology, messages can be transmitted to legitimate users in an offset direction that is as orthogonal as possible to the interference channel to ensure the reception SINR by legitimate users. Combining the… More >

  • Open Access

    ARTICLE

    Computer Modelling of Compact 28/38 GHz Dual-Band Antenna for Millimeter-Wave 5G Applications

    Amit V. Patel1, Arpan Desai1, Issa Elfergani2,3,*, Hiren Mewada4, Chemseddine Zebiri5, Keyur Mahant1, Jonathan Rodriguez2, Raed Abd-Alhameed3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2867-2879, 2023, DOI:10.32604/cmes.2023.026200

    Abstract A four-element compact dual-band patch antenna having a common ground plane operating at 28/38 GHz is proposed for millimeter-wave communication systems in this paper. The multiple-input-multiple-output (MIMO) antenna geometry consists of a slotted ellipse enclosed within a hollow circle which is orthogonally rotated with a connected partial ground at the back. The overall size of the four elements MIMO antenna is 2.24λ × 2.24λ (at 27.12 GHz). The prototype of four-element MIMO resonator is designed and printed using Rogers RT Duroid 5880 with εr = 2.2 and loss tangent = 0.0009 and having a thickness of 0.8 mm. It covers… More >

  • Open Access

    ARTICLE

    An Optimized Approach for Spectrum Utilization in mmWave Massive MIMO 5G Wireless Networks

    Elsaid Md. Abdelrahim1,2, Mona Alduailij3, Mai Alduailij3, Romany F. Mansour4,*, Osama A. Ghoneim5

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1493-1505, 2023, DOI:10.32604/csse.2023.037976

    Abstract Massive multiple-input multiple-output (MIMO) systems that use the millimeter-wave (mm-wave) band have a higher frequency and more antennas, which leads to significant path loss, high power consumption, and server interference. Due to these issues, the spectrum efficiency is significantly reduced, making spectral efficiency improvement an important research topic for 5G communication. Together with communication in the terahertz (THz) bands, mmWave communication is currently a component of the 5G standards and is seen as a solution to the commercial bandwidth shortage. The quantity of continuous, mostly untapped bandwidth in the 30–300 GHz band has presented a rare opportunity to boost the capacity… More >

  • Open Access

    ARTICLE

    QBFO-BOMP Based Channel Estimation Algorithm for mmWave Massive MIMO Systems

    Xiaoli Jing, Xianpeng Wang*, Xiang Lan, Ting Su

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1789-1804, 2023, DOI:10.32604/cmes.2023.028477

    Abstract At present, the traditional channel estimation algorithms have the disadvantages of over-reliance on initial conditions and high complexity. The bacterial foraging optimization (BFO)-based algorithm has been applied in wireless communication and signal processing because of its simple operation and strong self-organization ability. But the BFO-based algorithm is easy to fall into local optimum. Therefore, this paper proposes the quantum bacterial foraging optimization (QBFO)-binary orthogonal matching pursuit (BOMP) channel estimation algorithm to the problem of local optimization. Firstly, the binary matrix is constructed according to whether atoms are selected or not. And the support set of the sparse signal is recovered… More >

  • Open Access

    ARTICLE

    BFS-SVM Classifier for QoS and Resource Allocation in Cloud Environment

    A. Richard William1,*, J. Senthilkumar2, Y. Suresh2, V. Mohanraj2

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 777-790, 2023, DOI:10.32604/csse.2023.031753

    Abstract In cloud computing Resource allocation is a very complex task. Handling the customer demand makes the challenges of on-demand resource allocation. Many challenges are faced by conventional methods for resource allocation in order to meet the Quality of Service (QoS) requirements of users. For solving the about said problems a new method was implemented with the utility of machine learning framework of resource allocation by utilizing the cloud computing technique was taken in to an account in this research work. The accuracy in the machine learning algorithm can be improved by introducing Bat Algorithm with feature selection (BFS) in the… More >

  • Open Access

    ARTICLE

    Performance Analysis of Intelligent Reflecting Surface Assisted Wireless Communication System

    Weiqiang Tan1,*, Quanquan Zhou1, Weijie Tan2, Longcheng Yang3, Chunguo Li4

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 775-787, 2023, DOI:10.32604/cmes.2023.027427

    Abstract In this paper, we investigate the end-to-end performance of intelligent reflecting surface (IRS)-assisted wireless communication systems. We consider a system in which an IRS is deployed on a uniform planar array (UPA) configuration, including a large number of reflecting elements, where the transmitters and receivers are only equipped with a single antenna. Our objective is to analytically obtain the achievable ergodic rate, outage probability, and bit error rate (BER) of the system. Furthermore, to maximize the system’s signal-to-noise ratio (SNR), we design the phase shift of each reflecting element and derive the optimal reflection phase of the IRS based on… More > Graphic Abstract

    Performance Analysis of Intelligent Reflecting Surface Assisted Wireless Communication System

  • Open Access

    ARTICLE

    Defected Ground Structure Multiple Input-Output Antenna For Wireless Applications

    Ramya Sridhar1,*, Vijayalakshimi Patteeswaran2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2109-2122, 2023, DOI:10.32604/csse.2023.036781

    Abstract In this paper, the investigation of a novel compact 2 × 2, 2 × 1, and 1 × 1 Ultra-Wide Band (UWB) based Multiple-Input Multiple-Output (MIMO) antenna with Defected Ground Structure (DGS) is employed. The proposed Electromagnetic Radiation Structures (ERS) is composed of multiple radiating elements. These MIMO antennas are designed and analyzed with and without DGS. The feeding is introduced by a microstrip-fed line to significantly moderate the radiating structure’s overall size, which is 60 × 40 × 1 mm. The high directivity and divergence characteristics are attained by introducing the microstrip-fed lines perpendicular to each other. And the… More >

  • Open Access

    ARTICLE

    Design of Six Element MIMO Antenna with Enhanced Gain for 28/38 GHz mm-Wave 5G Wireless Application

    K. Jayanthi1,*, A. M. Kalpana2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1689-1705, 2023, DOI:10.32604/csse.2023.034613

    Abstract The fifth-generation (5G) wireless technology is the most recent standardization in communication services of interest across the globe. The concept of Multiple-Input-Multiple-Output antenna (MIMO) systems has recently been incorporated to operate at higher frequencies without limitations. This paper addresses, design of a high-gain MIMO antenna that offers a bandwidth of 400 MHz and 2.58 GHz by resonating at 28 and 38 GHz, respectively for 5G millimeter (mm)-wave applications. The proposed design is developed on a RT Duroid 5880 substrate with a single elemental dimension of 9.53 × 7.85 × 0.8 mm3. The patch antenna is fully grounded and is fed with a 50-ohm stepped impedance… More >

  • Open Access

    ARTICLE

    4-Port Octagonal Shaped MIMO Antenna with Low Mutual Coupling for UWB Applications

    Mahmoud A. Abdelghany1,4, Mohamed Fathy Abo Sree2, Arpan Desai3, Ahmed A. Ibrahim4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1999-2015, 2023, DOI:10.32604/cmes.2023.023643

    Abstract A 4-port multiple-input multiple-output (MIMO) antenna exhibiting low mutual coupling and UWB performance is developed. The octagonal-shaped four-antenna elements are connected with a 50 Ω microstrip feed line that is arranged rotationally to achieve the orthogonal polarization for improving the MIMO system performance. The antenna has a wideband impedance bandwidth of 7.5 GHz with S11 < −10 dB from (103.44%) 3.5–11 GHz and inter-element isolation higher than 20 dB. Antenna validation is carried out by verifying the simulated and measured results after fabricating the antenna. The results in the form of omnidirectional radiation patterns, peak gain (≥4 dBi), and Envelope Correlation Coefficient (ECC) (≤0.01) are extracted to validate… More > Graphic Abstract

    4-Port Octagonal Shaped MIMO Antenna with Low Mutual Coupling for UWB Applications

  • Open Access

    ARTICLE

    A Novel Compact Highly Isolated UWB MIMO Antenna with WLAN Notch

    Muhammad Awais1, Shahid Bashir1, Awais Khan1,2, Muhammad Asif2, Nasim Ullah3,*, Hend I. Alkhammash4

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 669-681, 2023, DOI:10.32604/cmc.2022.033939

    Abstract This paper presents a compact Multiple Input Multiple Output (MIMO) antenna with WLAN band notch for Ultra-Wideband (UWB) applications. The antenna is designed on 0.8 mm thick low-cost FR-4 substrate having a compact size of 22 mm × 30 mm. The proposed antenna comprises of two monopole patches on the top layer of substrate while having a shared ground on its bottom layer. The mutual coupling between adjacent patches has been reduced by using a novel stub with shared ground structure. The stub consists of complementary rectangular slots that disturb the surface current direction and thus result in reducing mutual… More >

Displaying 1-10 on page 1 of 49. Per Page