Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (53)
  • Open Access

    ARTICLE

    Explore Advanced Hybrid Deep Learning for Enhanced Wireless Signal Detection in 5G OFDM Systems

    Ahmed K. Ali1, Jungpil Shin2,*, Yujin Lim3,*, Da-Hun Seong3

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4245-4278, 2025, DOI:10.32604/cmes.2025.073871 - 23 December 2025

    Abstract Single-signal detection in orthogonal frequency-division multiplexing (OFDM) systems presents a challenge due to the time-varying nature of wireless channels. Although conventional methods have limitations, particularly in multi-input multioutput orthogonal frequency division multiplexing (MIMO-OFDM) systems, this paper addresses this problem by exploring advanced deep learning approaches for combined channel estimation and signal detection. Specifically, we propose two hybrid architectures that integrate a convolutional neural network (CNN) with a recurrent neural network (RNN), namely, CNN-long short-term memory (CNN-LSTM) and CNN-bidirectional-LSTM (CNN-Bi-LSTM), designed to enhance signal detection performance in MIMO-OFDM systems. The proposed CNN-LSTM and CNN-Bi-LSTM architectures are… More >

  • Open Access

    ARTICLE

    Through-Wall Multihuman Activity Recognition Based on MIMO Radar

    Changlong Wang1, Jiawei Jiang1, Chong Han1,2,*, Hengyi Ren3, Lijuan Sun1,2, Jian Guo1,2

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4537-4550, 2025, DOI:10.32604/cmc.2025.063295 - 19 May 2025

    Abstract Existing through-wall human activity recognition methods often rely on Doppler information or reflective signal characteristics of the human body. However, static individuals, lacking prominent motion features, do not generate Doppler information. Moreover, radar signals experience significant attenuation due to absorption and scattering effects as they penetrate walls, limiting recognition performance. To address these challenges, this study proposes a novel through-wall human activity recognition method based on MIMO radar. Utilizing a MIMO radar operating at 1–2 GHz, we capture activity data of individuals through walls and process it into range-angle maps to represent activity features. To… More >

  • Open Access

    ARTICLE

    Secure Channel Estimation Using Norm Estimation Model for 5G Next Generation Wireless Networks

    Khalil Ullah1,*, Song Jian1, Muhammad Naeem Ul Hassan1, Suliman Khan2, Mohammad Babar3,*, Arshad Ahmad4, Shafiq Ahmad5

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1151-1169, 2025, DOI:10.32604/cmc.2024.057328 - 03 January 2025

    Abstract The emergence of next generation networks (NextG), including 5G and beyond, is reshaping the technological landscape of cellular and mobile networks. These networks are sufficiently scaled to interconnect billions of users and devices. Researchers in academia and industry are focusing on technological advancements to achieve high-speed transmission, cell planning, and latency reduction to facilitate emerging applications such as virtual reality, the metaverse, smart cities, smart health, and autonomous vehicles. NextG continuously improves its network functionality to support these applications. Multiple input multiple output (MIMO) technology offers spectral efficiency, dependability, and overall performance in conjunction with More >

  • Open Access

    ARTICLE

    Mean Field-Based Dynamic Backoff Optimization for MIMO-Enabled Grant-Free NOMA in Massive IoT Networks

    Haibo Wang1, Hongwei Gao1,*, Pai Jiang1, Matthieu De Mari2, Panzer Gu3, Yinsheng Liu1

    Journal on Internet of Things, Vol.6, pp. 17-41, 2024, DOI:10.32604/jiot.2024.054791 - 26 August 2024

    Abstract In the 6G Internet of Things (IoT) paradigm, unprecedented challenges will be raised to provide massive connectivity, ultra-low latency, and energy efficiency for ultra-dense IoT devices. To address these challenges, we explore the non-orthogonal multiple access (NOMA) based grant-free random access (GFRA) schemes in the cellular uplink to support massive IoT devices with high spectrum efficiency and low access latency. In particular, we focus on optimizing the backoff strategy of each device when transmitting time-sensitive data samples to a multiple-input multiple-output (MIMO)-enabled base station subject to energy constraints. To cope with the dynamic varied channel… More >

  • Open Access

    ARTICLE

    Anti-Jamming Null Space Projection Beamforming Based on Symbiotic Radio

    Baofeng Ji1,2,3,4,*, Yifan Liu1,2,3,4, Tingpeng Li1, Ling Xing2, Weixing Wang2, Shahid Mumtaz5, Xiaolong Shang6, Wanying Liu2, Congzheng Han4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 679-689, 2024, DOI:10.32604/cmes.2023.028667 - 22 September 2023

    Abstract With the development of information technology, more and more devices are connected to the Internet through wireless communication to complete data interconnection. Due to the broadcast characteristics of wireless channels, wireless networks have suffered more and more malicious attacks. Physical layer security has received extensive attention from industry and academia. MIMO is considered to be one of the most important technologies related to physical layer security. Through beamforming technology, messages can be transmitted to legitimate users in an offset direction that is as orthogonal as possible to the interference channel to ensure the reception SINR… More >

  • Open Access

    ARTICLE

    Computer Modelling of Compact 28/38 GHz Dual-Band Antenna for Millimeter-Wave 5G Applications

    Amit V. Patel1, Arpan Desai1, Issa Elfergani2,3,*, Hiren Mewada4, Chemseddine Zebiri5, Keyur Mahant1, Jonathan Rodriguez2, Raed Abd-Alhameed3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2867-2879, 2023, DOI:10.32604/cmes.2023.026200 - 03 August 2023

    Abstract A four-element compact dual-band patch antenna having a common ground plane operating at 28/38 GHz is proposed for millimeter-wave communication systems in this paper. The multiple-input-multiple-output (MIMO) antenna geometry consists of a slotted ellipse enclosed within a hollow circle which is orthogonally rotated with a connected partial ground at the back. The overall size of the four elements MIMO antenna is 2.24λ × 2.24λ (at 27.12 GHz). The prototype of four-element MIMO resonator is designed and printed using Rogers RT Duroid 5880 with εr = 2.2 and loss tangent = 0.0009 and having a thickness of More >

  • Open Access

    ARTICLE

    An Optimized Approach for Spectrum Utilization in mmWave Massive MIMO 5G Wireless Networks

    Elsaid Md. Abdelrahim1,2, Mona Alduailij3, Mai Alduailij3, Romany F. Mansour4,*, Osama A. Ghoneim5

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1493-1505, 2023, DOI:10.32604/csse.2023.037976 - 28 July 2023

    Abstract Massive multiple-input multiple-output (MIMO) systems that use the millimeter-wave (mm-wave) band have a higher frequency and more antennas, which leads to significant path loss, high power consumption, and server interference. Due to these issues, the spectrum efficiency is significantly reduced, making spectral efficiency improvement an important research topic for 5G communication. Together with communication in the terahertz (THz) bands, mmWave communication is currently a component of the 5G standards and is seen as a solution to the commercial bandwidth shortage. The quantity of continuous, mostly untapped bandwidth in the 30–300 GHz band has presented a rare… More >

  • Open Access

    ARTICLE

    QBFO-BOMP Based Channel Estimation Algorithm for mmWave Massive MIMO Systems

    Xiaoli Jing, Xianpeng Wang*, Xiang Lan, Ting Su

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1789-1804, 2023, DOI:10.32604/cmes.2023.028477 - 26 June 2023

    Abstract At present, the traditional channel estimation algorithms have the disadvantages of over-reliance on initial conditions and high complexity. The bacterial foraging optimization (BFO)-based algorithm has been applied in wireless communication and signal processing because of its simple operation and strong self-organization ability. But the BFO-based algorithm is easy to fall into local optimum. Therefore, this paper proposes the quantum bacterial foraging optimization (QBFO)-binary orthogonal matching pursuit (BOMP) channel estimation algorithm to the problem of local optimization. Firstly, the binary matrix is constructed according to whether atoms are selected or not. And the support set of… More >

  • Open Access

    ARTICLE

    BFS-SVM Classifier for QoS and Resource Allocation in Cloud Environment

    A. Richard William1,*, J. Senthilkumar2, Y. Suresh2, V. Mohanraj2

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 777-790, 2023, DOI:10.32604/csse.2023.031753 - 26 May 2023

    Abstract In cloud computing Resource allocation is a very complex task. Handling the customer demand makes the challenges of on-demand resource allocation. Many challenges are faced by conventional methods for resource allocation in order to meet the Quality of Service (QoS) requirements of users. For solving the about said problems a new method was implemented with the utility of machine learning framework of resource allocation by utilizing the cloud computing technique was taken in to an account in this research work. The accuracy in the machine learning algorithm can be improved by introducing Bat Algorithm with… More >

  • Open Access

    ARTICLE

    Performance Analysis of Intelligent Reflecting Surface Assisted Wireless Communication System

    Weiqiang Tan1,*, Quanquan Zhou1, Weijie Tan2, Longcheng Yang3, Chunguo Li4

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 775-787, 2023, DOI:10.32604/cmes.2023.027427 - 23 April 2023

    Abstract In this paper, we investigate the end-to-end performance of intelligent reflecting surface (IRS)-assisted wireless communication systems. We consider a system in which an IRS is deployed on a uniform planar array (UPA) configuration, including a large number of reflecting elements, where the transmitters and receivers are only equipped with a single antenna. Our objective is to analytically obtain the achievable ergodic rate, outage probability, and bit error rate (BER) of the system. Furthermore, to maximize the system’s signal-to-noise ratio (SNR), we design the phase shift of each reflecting element and derive the optimal reflection phase… More > Graphic Abstract

    Performance Analysis of Intelligent Reflecting Surface Assisted Wireless Communication System

Displaying 1-10 on page 1 of 53. Per Page