Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (109)
  • Open Access

    ARTICLE

    Manufacturing a Biodegradable Container for Planting Plants Based on an Innovative Wood-Polymer Composite

    Ksenia Anikeeva*, Ruslan Safin

    Journal of Renewable Materials, Vol.13, No.11, pp. 2235-2252, 2025, DOI:10.32604/jrm.2025.02025-0128 - 24 November 2025

    Abstract The use of wood-polymer composites (WPC) based on a polymer matrix and wood filler is a modern, environmentally friendly direction in material science. However, untreated wood filler exhibits poor adhesion to hydrophobic polymers due to its hydrophilic lignocellulose fibers. To address this, ozone treatment is employed to enhance compatibility, reduce water absorption, and regulate biodegradation rates. This study investigates the hypothesis that ozone modification of wood filler improves adhesion to thermoplastic starch, thereby enhancing the physico-mechanical properties and controlled biodegradation of WPCs under compost conditions. A comprehensive analysis was conducted on composites containing untreated and… More >

  • Open Access

    ARTICLE

    Magnetohydrodynamic Jeffrey Nanofluid Flow across an Inclined Stretching Sheet via Porous Media with Slip Effects

    Pennelli Saila Kumari1, Shaik Mohammed Ibrahim1,*, Prathi Vijaya Kumar2, Giulio Lorenzini3,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1639-1660, 2025, DOI:10.32604/fhmt.2025.069063 - 31 October 2025

    Abstract In this paper, the authors examine various slip effects on the magnetic field and thermal radiative impacts on the flow, mass and heat transfer of a Jeffrey nanofluid over a 2-dimensional inclined stretching sheet by a porous media. The offered work is modelled to be in the form of a combination of coupled highly nonlinear partial differential equations in dimensional contexts. Governing equations were obtained, dimensionless parameters were defined in terms of similarity parameters, and the solutions were obtained by the Homotopy Analysis Method (HAM). The analysis is significant as the effects of viscosity are… More >

  • Open Access

    ARTICLE

    Genomic and Functional Characterization of Thermophilic Paenibacillus sp. VCA1: A Biocontrol Agent Isolated from El Chichón Volcano Crater Lake

    Nancy Abril Martínez-López1, Betsy Anaid Peña-Ocaña2, Rodolfo García-Contreras3, Toshinari Maeda4, Reiner Rincón-Rosales1, Federico Antonio Gutiérrez-Miceli1, Víctor Manuel Ruíz-Valdiviezo1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.9, pp. 2729-2743, 2025, DOI:10.32604/phyton.2025.068176 - 30 September 2025

    Abstract Species of the genus Paenibacillus, especially those from extreme environments that have been reported, are known for producing bioactive compounds with agricultural and biotechnological applications. In this study, we investigated the genomic and biochemical potential of Paenibacillus sp. VCA1 strain isolated from a thermophilic environment. Taxonomic identification was performed using whole genome similarity analysis, TETRA four-nucleotide frequency of occurrence analysis, ANI average nucleotide identity analysis, and gene distance analysis using digital DNA-DNA hybridization (dDDH). Functional analysis of the strain VCA1 was performed by detecting genes, enzymes, and genome subsystems involved in biocontrol and plant growth promotion,… More >

  • Open Access

    REVIEW

    A review on pathobiology of circulating tumour plasma cells: The sine qua non of poor prognosis in plasma cell neoplasms

    PRATIBHA SUKU1, AISHWARYA DASH1, ARAVIND RADHAKRISHNAN1, PANKAJ MALHOTRA2, MAN UPDESH SINGH SACHDEVA1,*

    Oncology Research, Vol.33, No.5, pp. 1055-1068, 2025, DOI:10.32604/or.2024.055154 - 18 April 2025

    Abstract Circulating plasma cells (CPCs) in patients of plasma cell neoplasm have been an area of intense research in recent decades. Circulating tumor plasma cells (CTPCs) might represent a sub-clone of tumor cells that have exited into peripheral blood as a result of the dynamic interactions between the bone marrow (BM) microenvironment and neoplastic plasma cells. Chemokine receptors like chemokine receptor 4 (CXCR4) and integrins are known to play a role in homing and migration of plasma cells (PCs). The hypoxic microenvironment in the BM niche also contributes to their circulation through various mechanisms. In addition,… More >

  • Open Access

    ARTICLE

    Research on Wind-Solar Complementarity Rate Analysis and Capacity Configuration Based on COPULA-IMOPSO

    Caifeng Wen1, Feifei Xue1,*, Hongliang Hao2, Edwin E. Nyakilla2, Ning Yang1,*, Yongsheng Wang3, Yuwen Zhang2

    Energy Engineering, Vol.122, No.4, pp. 1511-1529, 2025, DOI:10.32604/ee.2025.060810 - 31 March 2025

    Abstract This paper presents a new capacity planning method that utilizes the complementary characteristics of wind and solar power output. It addresses the limitations of relying on a single metric for a comprehensive assessment of complementarity. To enable more accurate predictions of the optimal wind-solar ratio, a comprehensive complementarity rate is proposed, which allows for the optimization of wind-solar capacity based on this measure. Initially, the Clayton Copula function is employed to create a joint probability distribution model for wind and solar power, enabling the calculation of the comprehensive complementarity rate. Following this, a joint planning… More >

  • Open Access

    ARTICLE

    Body Temperature Programmable Shape Memory Thermoplastic Rubber

    Taoxi Wang1, Zhuo Liu1,2, Fu Jian1, Xing Shen1, Chen Wang1, Huwei Bian3, Tao Jiang3,*, Wei Min Huang4

    Journal of Polymer Materials, Vol.42, No.1, pp. 81-94, 2025, DOI:10.32604/jpm.2025.061047 - 27 March 2025

    Abstract This paper presents the development of a thermoplastic shape memory rubber that can be programmed at human body temperature for comfortable fitting applications. We hybridized commercially available thermoplastic rubber (TPR) used in the footwear industry with un-crosslinked polycaprolactone (PCL) to create two samples, namely TP6040 and TP7030. The shape memory behavior, elasticity, and thermo-mechanical response of these rubbers were systematically investigated. The experimental results demonstrated outstanding shape memory performance, with both samples achieving shape fixity ratios (Rf) and shape recovery ratios (Rr) exceeding 94%. TP6040 exhibited a fitting time of 80 s at body temperature (37°C), More >

  • Open Access

    ARTICLE

    Advanced Poly(Lactic Acid)/Thermoplastic Polyurethane Blend-Based Nanocomposites with Carbon Nanotubes and Graphene Nanoplatelets for Shape Memory

    Nayara Koba de Moura Morgado, Guilherme Ferreira de Melo Morgado, Erick Gabriel Ribeiro dos Anjos, Fabio Roberto Passador*

    Journal of Polymer Materials, Vol.42, No.1, pp. 95-110, 2025, DOI:10.32604/jpm.2025.059364 - 27 March 2025

    Abstract The continuous improvement in patient care and recovery is driving the development of innovative materials for medical applications. Medical sutures, essential for securing implants and closing deep wounds, have evolved to incorporate smart materials capable of responding to various stimuli. This study explores the potential of thermoresponsive sutures, made from shape memory materials, that contract upon heating to bring loose stitches closer together, promoting optimal wound closure. We developed nanocomposites based on a blend of poly(lactic acid) (PLA) and thermoplastic polyurethane (TPU)—biopolymers that inherently exhibit shape memory—enhanced with carbon nanotubes (CNT) and graphene nanoplatelets (GN)… More >

  • Open Access

    ARTICLE

    Structural and Mechanical Properties of Bio-Sourced Thermoplastic Materials from Flax and Fatty Acids

    Prabu Satria Sejati1,2, Adrien Magne1, Luke Froment1, Jennifer Afrim1, Alexandre Maenhaut3, Julie Maillet3, Firmin Obounou Akong1,*, Frédéric Fradet3, Philippe Gérardin1,*

    Journal of Renewable Materials, Vol.13, No.3, pp. 539-552, 2025, DOI:10.32604/jrm.2024.056813 - 20 March 2025

    Abstract Bio-based thermoplastic film from flax fiber and fatty acid (FA) was obtained using trifluoroacetic anhydride (TFAA) as an impelling agent. Different quantities of TFAA/FA, size of flax fiber, and fatty acids were applied to investigate chemical structure in relation to the mechanical properties. Decreasing the quantity of TFAA/FA by almost half from 1:4 to 1:2.5 (flax to TFAA/FA) only reduces by 22% the weight percent gain (WPG) and ester content and reducing flax fiber size slightly increases the WPG and ester content. All the treatments showed significant chemical structure modification, observed by FTIR and… More > Graphic Abstract

    Structural and Mechanical Properties of Bio-Sourced Thermoplastic Materials from Flax and Fatty Acids

  • Open Access

    ARTICLE

    Modeling Thermophysical Properties of Hybrid Nanofluids: Foundational Research for Future Photovoltaic Thermal Applications

    Chakar Khadija*, El Mouden Mahmoud, Hajjaji Abdelowahed

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 61-70, 2025, DOI:10.32604/fdmp.2024.053458 - 24 January 2025

    Abstract The primary objective of this study is to develop an innovative theoretical model to accurately predict the thermophysical properties of hybrid nanofluids designed to enhance cooling in solar panel applications. This research lays the groundwork for our future studies, which will focus on photovoltaic thermal applications. These nanofluids consist of water and nanoparticles of alumina (Al2O3), titanium dioxide (TiO2), and copper (Cu), exploring volumetric concentrations ranging from 0% to 4% for each type of nanoparticle, and up to 10% for total mixtures. The developed model accounts for complex interactions between the nanoparticles and the base fluid, More >

  • Open Access

    ARTICLE

    Unmasking Social Robots’ Camouflage: A GNN-Random Forest Framework for Enhanced Detection

    Weijian Fan1,*, Chunhua Wang2, Xiao Han3, Chichen Lin4

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 467-483, 2025, DOI:10.32604/cmc.2024.056930 - 03 January 2025

    Abstract The proliferation of robot accounts on social media platforms has posed a significant negative impact, necessitating robust measures to counter network anomalies and safeguard content integrity. Social robot detection has emerged as a pivotal yet intricate task, aimed at mitigating the dissemination of misleading information. While graph-based approaches have attained remarkable performance in this realm, they grapple with a fundamental limitation: the homogeneity assumption in graph convolution allows social robots to stealthily evade detection by mingling with genuine human profiles. To unravel this challenge and thwart the camouflage tactics, this work proposed an innovative social… More >

Displaying 1-10 on page 1 of 109. Per Page