Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (267)
  • Open Access

    ARTICLE

    P2RX1 Influences the Prognosis of Ph+/Ph-Like ALL through Energy and Calcium Metabolism

    Xiangmei Ye1,2,3, Baoyi Yang4, Xin Zhang5, Luyuan Yang1, Likun Zhang5, Qin Ren1, Xiaobing Li1, Leiguang Feng1, Lanlan Wei3,6,7,*, Peng Song1, Yuqing Ye8, Xin Lian9, Yujuan Gao9, Haidi Tang1, Zhiyu Liu1

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.068814 - 30 December 2025

    Abstract Objectives: Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia and Philadelphia-like B-cell acute lymphoblastic leukemia (Ph+/Ph-like ALL) constitute the majority of relapsed/refractory B-ALL (R/R B-ALL) cases, highlighting an urgent need to discover new therapeutic targets. This study aims to elucidate the mechanisms underlying poor prognosis in Ph+/Ph-like ALL through transcriptome sequencing and functional cytological assays, with the goal of informing new clinical treatment strategies. Results: Transcriptomic analysis of Ph+/Ph-like ALL patients revealed that low expression of P2X Purinoceptor 1 (P2RX1) was associated with unfavorable outcomes. Specifically, patients with poor prognosis and low P2RX1 expression exhibited downregulation of… More >

  • Open Access

    ARTICLE

    ZMIZ2/MCM3 Axis Participates in Triple-Negative Breast Cancer Progression

    Xiaopan Zou1,2, Meiyang Sun3, Xin Jiang1, Jingze Yu2, Xiaomeng Li4,*, Bingyu Nie1,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.066662 - 30 December 2025

    Abstract Objective: Triple-negative breast cancer (TNBC) is highly aggressive and lacks an effective targeted therapy. This study aimed to elucidate the functions and possible mechanisms of action of zinc finger miz-type containing 2 (ZMIZ2) and minichromosome maintenance complex component 3 (MCM3) in TNBC progression. Methods: The relationship between ZMIZ2 expression and clinical characteristics of TNBC was investigated. In vitro and in vivo experiments were performed to investigate the role of ZMIZ2 dysregulation in TNBC cell malignant behaviors. The regulatory relationship between ZMIZ2 and MCM3 was also explored. Transcriptome sequencing was performed to elucidate possible mechanisms underlying the ZMIZ2/MCM3… More >

  • Open Access

    ARTICLE

    Double Diffusion Convection in Sisko Nanofluids with Thermal Radiation and Electroosmotic Effects: A Morlet-Wavelet Neural Network Approach

    Arshad Riaz1,*, Misbah Ilyas1, Muhammad Naeem Aslam2, Safia Akram3, Sami Ullah Khan4, Ghaliah Alhamzi5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3481-3509, 2025, DOI:10.32604/cmes.2025.072513 - 23 December 2025

    Abstract Peristaltic transport of non-Newtonian nanofluids with double diffusion is essential to biological engineering, microfluidics, and manufacturing processes. The authors tackle the key problem of Sisko nanofluids under double diffusion convection with thermal radiations and electroosmotic effects. The study proposes a solution approach by using Morlet-Wavelet Neural Networks that can effectively solve this complex problem by their superior ability in the capture of nonlinear dynamics. These convergence analyses were calculated across fifty independent runs. Theil’s Inequality Coefficient and the Mean Squared Error values range from 10−7 to 10−5 and 10−7 to 10−10, respectively. These values showed the proposed More >

  • Open Access

    ARTICLE

    Impedance spectroscopy insights into (NiO)(0.5)/(Fe2O3)(0.5)@C@MoS2 nanofibers composite for tunable EMI shielding applications

    U. Anwara, N. A. Noorb, S. Mumtazc,*, I. M. Moussad1

    Chalcogenide Letters, Vol.22, No.3, pp. 261-276, 2025, DOI:10.15251/CL.2025.223.261

    Abstract The combination of two-step synthesis processes is employed for the fabrication of (NiO)(0.5)/(Fe2O3)(0.5)@C@MoS2 (NFCM) nanofibers composite through electrospinning and hydrothermal techniques. This nanofiber composite is designed for tunable dielectric materials and electromagnetic interference (EMI) shielding applications. Using impedance spectroscopy, the electrical properties of an NFCM pellet are analyzed using an equivalent circuit model (R11<), with a primary focus on the variation of relaxation time with frequency at different temperatures. Utilizing the Mott. variable range hopping (MVRH) model, and small polaronic hopping model, the localization length of the hoping carriers is determined to be 0.98 Å and More >

  • Open Access

    ARTICLE

    Molybdenum disulfide carbon composite material using hydrothermal method as electrode material for supercapacitors

    X. L. Guoa, Y. F. Zhanga,*, S. Y. Lib, Q. Lib, Q. Haoc, X. Y. Ranc, Y. M. Zhaod

    Chalcogenide Letters, Vol.22, No.4, pp. 313-330, 2025, DOI:10.15251/CL.2025.224.313

    Abstract MoS2 has excellent properties but low conductivity, limiting its use in supercapacitors. Carbon’s high conductivity and stability enhance MoS2’s electrochemical performance and cycling stability. This study prepared MoS2/C composites via a one-step hydrothermal method, exploring the effects of solvents and carbon content. Deionized water as a solvent resulted in composites with large specific surface areas and good electrochemical properties. Increasing carbon content improved electrochemical performance, peaking at a glucose content of 0.28 mmol, achieving a specific capacitance of 202.6 F/g. However, excessive carbon content led to decreased performance. More >

  • Open Access

    ARTICLE

    Investigation of stable dielectric permittivity with superior EMI shielding capabilities of a multifunctional NiFe2O4@MoS2 nanomaterial

    U. Anwara,, M. Rafib, N. A. Noorc, S. Mumtazd,, Hosam O. Elansarye

    Chalcogenide Letters, Vol.22, No.4, pp. 293-311, 2025, DOI:10.15251/CL.2025.224.293

    Abstract This study presents a multifunctional NiFe2O4@MoS2 nanomaterial synthesized by co-precipitation and hydrothermal methods. The highly magnified Field emission scanning electron microscopic (FESEM) images expose an excellent interconnected network of MoS2 petals and NiFe2O4 cores. NiFe2O4@MoS2 nanomaterial's crystalline arrangement and phase purity are explored using X-ray diffraction (XRD) analysis. A comprehensive analysis of the NiFe2O4@MoS2 nanomaterial, focusing on its dynamic electrical properties across a temperature zone of 183 K to 373 K. The temperature-dependent impedance and modulus plots versus frequency reveal insights into the material’s conduction and relaxation. Electrical characteristics verify the contribution of electroactive regions, such as grains… More >

  • Open Access

    ARTICLE

    Synthesis of MoS2/Fe3O4 composites for the detection of liver cancer biomarker alpha-fetoprotein

    C. B. Cuia,b, G. C. Yangb, Z. Zhanga,, X. J. Wangc,

    Chalcogenide Letters, Vol.22, No.6, pp. 507-520, 2025, DOI:10.15251/CL.2025.226.507

    Abstract This research introduces an innovative aptasensor for detecting alpha-fetoprotein with exceptional sensitivity and specificity, employing a novel MoS2/Fe3O4 composite fabricated through an advanced in-situ growth methodology. The composite exhibited a hierarchical flower-like structure with uniformly distributed Fe3O4 nanoparticles, confirmed by SEM, XRD, and Raman spectroscopy. The MoS2/Fe3O4 composite demonstrated a 66% increase in surface area (7.16 m²/g) compared to pristine MoS2, enhancing aptamer immobilization and electron transfer efficiency. Electrochemical characterization revealed a significant increase in interfacial resistance upon AFP binding, with a detection limit of 0.3 pg/mL and a dual linear range of 0.001–0.1 ng/mL and 0.1–100 More >

  • Open Access

    ARTICLE

    Adsorption behavior and mechanism of heavy metal ions from acid mine drainage using two-dimensional MoS2 nanosheets

    K. Wanga,b,*, G. L. Lianc, Y. F. Qiaod

    Chalcogenide Letters, Vol.22, No.10, pp. 889-904, 2025, DOI:10.15251/CL.2025.2210.889

    Abstract The remediation of acid mine drainage (AMD), characterized by its high concentrations of toxic metal ions and low pH, presents a significant environmental challenge. In this study, exfoliated two-dimensional MoS nanosheets were prepared using a liquid-phase ultrasonication method and evaluated for their efficiency in removing Cd²⁺, Cu²⁺, and Pb²⁺ from aqueous solutions. Detailed structural and morphological analyses confirmed that the exfoliation process significantly enhanced surface area, pore volume, and exposure of reactive sulfur sites. Through isotherm and kinetic modeling analyses, the adsorption behavior was found to align with the Langmuir model and pseudo-second-order kinetic equation, which implies More >

  • Open Access

    ARTICLE

    Atmospheric Delay Correction Using GNSS and GACOS Data in InSAR Land Subsidence Monitoring over Banting, Selangor

    Mohd Hakimi Abdul Rahman1, Amir Sharifuddin Ab Latip1,*, Zulkiflee Abd Latif1,2, Siti Balqis Mohd Tun1, Nur Azlina Hariffin1, Mohd Fikri Razali3

    Revue Internationale de Géomatique, Vol.34, pp. 959-972, 2025, DOI:10.32604/rig.2025.071109 - 12 December 2025

    Abstract Atmospheric phase delay, primarily caused by water vapor in the troposphere, is a major source of error in InSAR measurements, especially for land subsidence monitoring. This study integrates GNSS and GACOS data to correct tropospheric delay and enhance InSAR accuracy in Banting, Selangor. A total of 27 Sentinel-1A images, 14 GNSS stations, and 27 corresponding GACOS ZTD maps were used to monitor subsidence between 2023 and 2025. The InSAR data were processed using SNAP, StaMPS, and the TRAIN toolbox, incorporating both GNSS- and GACOS-derived ZTD corrections. The results show that applying atmospheric correction improved the… More >

  • Open Access

    ARTICLE

    MHD Thermosolutal Flow in Casson-Fluid Microchannels: Taguchi–GRA–PCA Optimization

    Amina Mahreen1, Fateh Mebarek-Oudina2,3,4,*, Amna Ashfaq1, Jawad Raza1, Sami Ullah Khan5, Hanumesh Vaidya6

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2829-2853, 2025, DOI:10.32604/fdmp.2025.072492 - 01 December 2025

    Abstract Understanding the complex interaction between heat and mass transfer in non-Newtonian microflows is essential for the development and optimization of efficient microfluidic and thermal management systems. This study investigates the magnetohydrodynamic (MHD) thermosolutal convection of a Casson fluid within an inclined, porous microchannel subjected to convective boundary conditions. The nonlinear, coupled equations governing momentum, energy, and species transport are solved numerically using the MATLAB bvp4c solver, ensuring high numerical accuracy and stability. To identify the dominant parameters influencing flow behavior and to optimize transport performance, a comprehensive hybrid optimization framework—combining a modified Taguchi design, Grey… More >

Displaying 1-10 on page 1 of 267. Per Page