Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (178)
  • Open Access

    ARTICLE

    Modeling and Simulation of a Hybrid Jet-Impingement/Micro-Channel Heat Sink

    Taidong Xu1,2, Hao Liu2, Dejun Zhang1,2, Yadong Li2, Xiaoming Zhou2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.1, pp. 109-121, 2021, DOI:10.32604/fdmp.2021.010608 - 09 February 2021

    Abstract With the progressive increase in the number of transistors that can be accommodated on a single integrated circuit, new strategies are needed to extract heat from these devices in an efficient way. In this regard methods based on the combination of the so-called “jet impingement” and “micro-channel” approaches seem extremely promising for possible improvement and future applications in electronics as well as the aerospace and biomedical fields. In this paper, a hybrid heat sink based on these two technologies is analysed in the frame of an integrated model. Dedicated CFD simulation of the coupled flow/temperature More >

  • Open Access

    ARTICLE

    Effect of Recycling Cycles on the Mechanical and Damping Properties of Flax Fibre Reinforced Elium Composite: Experimental and Numerical Studies

    Sami Allagui1,2,*, Abderrahim El Mahi1, Jean-Luc Rebiere1, Moez Beyaoui2, Anas Bouguecha2, Mohamed Haddar2

    Journal of Renewable Materials, Vol.9, No.4, pp. 695-721, 2021, DOI:10.32604/jrm.2021.013586 - 01 February 2021

    Abstract This manuscript deals with the effects of recycling on the static and dynamic properties of flax fibers reinforced thermoplastic composites. The corresponding thermoplastic used in this work is Elium resin. It’s the first liquid thermoplastic resin that allows the production of recycled composite parts with promising mechanical behavior. It appeared on the resin market in 2014. But until now, no studies were available concerning how it can be recycled and reused. For this study, a thermocompression recycling process was investigated and applied to Elium resin. Flax fiber-reinforced Elium composites were produced using a resin infusion… More >

  • Open Access

    ARTICLE

    Test and Analysis of the Sound Insulation Performance of Four Types of Timber Structure Floors under Jumping Excitation

    Yujie Huang1, Hao Zhu2, Dauletbek Assima4, Zheng Wang1,*, Minmin Li3, Xinyue Zhao1

    Journal of Renewable Materials, Vol.9, No.4, pp. 829-840, 2021, DOI:10.32604/jrm.2021.014610 - 01 February 2021

    Abstract To improve the impact sound insulation performance of building floors and meet the objective requirements for living comfort of residents, in this article, three kinds of elastic cushion materials, Portuguese cork board, BGL insulation sound insulation foam board, and EPP polypropylene plastic foam board, are applied to the sound insulation of a light frame wood floor structure of the same bedroom and compared to the ordinary floor. This study uses the transfer function method and transient excitation method to measure the sound insulation, damping ratio, and elastic modulus of materials, as well as the sound… More >

  • Open Access

    ARTICLE

    Study on the Improvement of the Application of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise in Hydrology Based on RBFNN Data Extension Technology

    Jinping Zhang1,2, Youlai Jin1, Bin Sun1,*, Yuping Han3, Yang Hong4

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.2, pp. 755-770, 2021, DOI:10.32604/cmes.2021.012686 - 21 January 2021

    Abstract The complex nonlinear and non-stationary features exhibited in hydrologic sequences make hydrological analysis and forecasting difficult. Currently, some hydrologists employ the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method, a new time-frequency analysis method based on the empirical mode decomposition (EMD) algorithm, to decompose non-stationary raw data in order to obtain relatively stationary components for further study. However, the endpoint effect in CEEMDAN is often neglected, which can lead to decomposition errors that reduce the accuracy of the research results. In this study, we processed an original runoff sequence using the radial basis… More >

  • Open Access

    ARTICLE

    Dynamic Elastic Modulus and Damping Ratio of Lignin-Modified Loess

    Qian Wang1,#,*, Zhaozhao Liu1,2,#,*, Xiumei Zhong1, Zhongnan Gao1, Fuqiang Liu2

    Journal of Renewable Materials, Vol.9, No.3, pp. 523-540, 2021, DOI:10.32604/jrm.2021.014114 - 14 January 2021

    Abstract To effectively improve the poor engineering properties of loess and enhance its seismic performance, the industrial by-product lignin is used as a modified material. Based on lots of dynamic triaxial tests, the dynamic elastic modulus and damping ratio of lignin-modified loess were tested. The effects of lignin content on the dynamic elastic modulus and damping ratio of lignin-modified loess were analyzed. Combined with scanning electron microscopy (SEM) and X-ray diffraction (XRD), the microscopic mechanism of lignin to improve the dynamic properties of loess was studied. The results show that lignin can effectively modify the dynamic… More >

  • Open Access

    ARTICLE

    Damping Analysis and Failure Mechanism of 3D Printed Bio-Based Sandwich with Auxetic Core under Bending Fatigue Loading

    Khawla Essassi1,2,*, Jean-Luc Rebiere1, Abderrahim El Mahi1, Mohamed Amine Ben Souf2, Anas Bouguecha2, Mohamed Haddar2

    Journal of Renewable Materials, Vol.9, No.3, pp. 569-584, 2021, DOI:10.32604/jrm.2021.012253 - 14 January 2021

    Abstract Meta-sandwich composites with three-dimensional (3D) printed architecture structure are characterized by their high ability to absorb energy. In this paper, static and fatigue 3-point bending tests are implemented on a 3D printed sandwich composites with a re-entrant honeycomb core. The skins, core and whole sandwich are manufactured using the same bio-based material which is polylactic acid with flax fiber reinforcement. Experimental tests are performed in order to evaluate the durability and the ability of this material to dissipate energy. First, static tests are conducted to study the bending behaviour of the sandwich beams, as well… More >

  • Open Access

    ARTICLE

    Atrocious Impinging of COVID-19 Pandemic on Software Development Industries

    Wajdi Alhakami1, Ahmed Binmahfoudh2, Abdullah Baz3, Hosam Alhakami4, Md Tarique Jamal Ansari5, Raees Ahmad Khan5,*

    Computer Systems Science and Engineering, Vol.36, No.2, pp. 323-338, 2021, DOI:10.32604/csse.2021.014929 - 05 January 2021

    Abstract COVID-19 is the contagious disease transmitted by Coronavirus. The majority of people diagnosed with COVID-19 may suffer from moderate-to- severe respiratory illnesses and stabilize without preferential treatment. Those who are most likely to experience significant infections include the elderly as well as people with a history of significant medical issues including heart disease, diabetes, or chronic breathing problems. The novel Coronavirus has affected not only the physical and mental health of the people but also had adverse impact on their emotional well-being. For months on end now, due to constant monitoring and containment measures to… More >

  • Open Access

    ARTICLE

    Understanding the Language of ISIS: An Empirical Approach to Detect Radical Content on Twitter Using Machine Learning

    Zia Ul Rehman1,2, Sagheer Abbas1, Muhammad Adnan Khan3,*, Ghulam Mustafa2, Hira Fayyaz4, Muhammad Hanif1,2, Muhammad Anwar Saeed5

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1075-1090, 2021, DOI:10.32604/cmc.2020.012770 - 26 November 2020

    Abstract The internet, particularly online social networking platforms have revolutionized the way extremist groups are influencing and radicalizing individuals. Recent research reveals that the process initiates by exposing vast audiences to extremist content and then migrating potential victims to confined platforms for intensive radicalization. Consequently, social networks have evolved as a persuasive tool for extremism aiding as recruitment platform and psychological warfare. Thus, recognizing potential radical text or material is vital to restrict the circulation of the extremist chronicle. The aim of this research work is to identify radical text in social media. Our contributions are… More >

  • Open Access

    ARTICLE

    Optimizing Bidders Selection of Multi-Round Procurement Problem in Software Project Management Using Parallel Max-Min Ant System Algorithm

    Dac-Nhuong Le1,2,3,*, Gia Nhu Nguyen2,4, Harish Garg5, Quyet-Thang Huynh6, Trinh Ngoc Bao7, Nguyen Ngoc Tuan8

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 993-1010, 2021, DOI:10.32604/cmc.2020.012464 - 30 October 2020

    Abstract This paper presents a Game-theoretic optimization via Parallel MinMax Ant System (PMMAS) algorithm is used in practice to determine the Nash equilibrium value to resolve the confusion in choosing appropriate bidders of multi-round procurement problem in software project management. To this end, we introduce an approach that proposes: (i) A Game-theoretic model of multiround procurement problem (ii) A Nash equilibrium strategy corresponds to multi-round strategy bid (iii) An application of PSO for the determination of global Nash equilibrium. The balance point in Nash Equilibrium can help to maintain a sustainable structure not only in terms… More >

  • Open Access

    ARTICLE

    COMPARISON OF CFD AND EMPIRICAL MODELS FOR PREDICTING WALL TEMPERATURE AT SUPERCRITICAL CONDITIONS OF WATER

    S. Ananda, S. Suresha, R. Dhanuskodib, D. Santhosh Kumarb,*

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-9, 2020, DOI:10.5098/hmt.14.8

    Abstract The present work investigates the wall temperature prediction at supercritical pressure of water by CFD and compares the prediction of CFD and that of 11 empirical correlations available in literature. Supercritical-water heat transfer experimental data, covering a mass flux range of 400-1500 kg/m2s, heat flux range of 150-1000 kW/m2, at pressure 241 bar and diameter 10 mm tube, were obtained from literature. CFD simulations have been carried out for those operating conditions and compared with experimental data. Around 362 experimental wall temperature data of both heat transfer enhancement and heat transfer deterioration region have been taken More >

Displaying 101-110 on page 11 of 178. Per Page