Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,310)
  • Open Access

    ARTICLE

    Deep Learning for Wind Speed Forecasting Using Bi-LSTM with Selected Features

    Siva Sankari Subbiah1, Senthil Kumar Paramasivan2,*, Karmel Arockiasamy3, Saminathan Senthivel4, Muthamilselvan Thangavel2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3829-3844, 2023, DOI:10.32604/iasc.2023.030480 - 17 August 2022

    Abstract Wind speed forecasting is important for wind energy forecasting. In the modern era, the increase in energy demand can be managed effectively by forecasting the wind speed accurately. The main objective of this research is to improve the performance of wind speed forecasting by handling uncertainty, the curse of dimensionality, overfitting and non-linearity issues. The curse of dimensionality and overfitting issues are handled by using Boruta feature selection. The uncertainty and the non-linearity issues are addressed by using the deep learning based Bi-directional Long Short Term Memory (Bi-LSTM). In this paper, Bi-LSTM with Boruta feature… More >

  • Open Access

    ARTICLE

    Unmanned Aerial Vehicle Assisted Forest Fire Detection Using Deep Convolutional Neural Network

    A. K. Z Rasel Rahman1, S. M. Nabil Sakif1, Niloy Sikder1, Mehedi Masud2, Hanan Aljuaid3, Anupam Kumar Bairagi1,*

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3259-3277, 2023, DOI:10.32604/iasc.2023.030142 - 17 August 2022

    Abstract Disasters may occur at any time and place without little to no presage in advance. With the development of surveillance and forecasting systems, it is now possible to forebode the most life-threatening and formidable disasters. However, forest fires are among the ones that are still hard to anticipate beforehand, and the technologies to detect and plot their possible courses are still in development. Unmanned Aerial Vehicle (UAV) image-based fire detection systems can be a viable solution to this problem. However, these automatic systems use advanced deep learning and image processing algorithms at their core and… More >

  • Open Access

    ARTICLE

    Recent Advances in Fatigue Detection Algorithm Based on EEG

    Fei Wang1,2, Yinxing Wan1, Man Li1,2, Haiyun Huang1,2, Li Li1, Xueying Hou1, Jiahui Pan1,2, Zhenfu Wen3, Jingcong Li1,2,*

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3573-3586, 2023, DOI:10.32604/iasc.2023.029698 - 17 August 2022

    Abstract Fatigue is a state commonly caused by overworked, which seriously affects daily work and life. How to detect mental fatigue has always been a hot spot for researchers to explore. Electroencephalogram (EEG) is considered one of the most accurate and objective indicators. This article investigated the development of classification algorithms applied in EEG-based fatigue detection in recent years. According to the different source of the data, we can divide these classification algorithms into two categories, intra-subject (within the same subject) and cross-subject (across different subjects). In most studies, traditional machine learning algorithms with artificial feature… More >

  • Open Access

    ARTICLE

    SVM Algorithm for Vibration Fault Diagnosis in Centrifugal Pump

    Nabanita Dutta1, Palanisamy Kaliannan1,*, Paramasivam Shanmugam2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 2997-3020, 2023, DOI:10.32604/iasc.2023.028704 - 17 August 2022

    Abstract Vibration failure in the pumping system is a significant issue for industries that rely on the pump as a critical device which requires regular maintenance. To save energy and money, a new automated system must be developed that can detect anomalies at an early stage. This paper presents a case study of a machine learning (ML)-based computational technique for automatic fault detection in a cascade pumping system based on variable frequency drive (VFD). Since the intensity of the vibrational effect depends on which axis has the most significant effect, a three-axis accelerometer is used to… More >

  • Open Access

    ARTICLE

    An Optimized Technique for RNA Prediction Based on Neural Network

    Ahmad Ali AlZubi*, Jazem Mutared Alanazi

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3599-3611, 2023, DOI:10.32604/iasc.2023.027913 - 17 August 2022

    Abstract Pathway reconstruction, which remains a primary goal for many investigations, requires accurate inference of gene interactions and causality. Non-coding RNA (ncRNA) is studied because it has a significant regulatory role in many plant and animal life activities, but interacting micro-RNA (miRNA) and long non-coding RNA (lncRNA) are more important. Their interactions not only aid in the in-depth research of genes’ biological roles, but also bring new ideas for illness detection and therapy, as well as plant genetic breeding. Biological investigations and classical machine learning methods are now used to predict miRNA-lncRNA interactions. Because biological identification… More >

  • Open Access

    ARTICLE

    A Light-Weight Deep Learning-Based Architecture for Sign Language Classification

    M. Daniel Nareshkumar1,*, B. Jaison2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3501-3515, 2023, DOI:10.32604/iasc.2023.027848 - 17 August 2022

    Abstract With advancements in computing powers and the overall quality of images captured on everyday cameras, a much wider range of possibilities has opened in various scenarios. This fact has several implications for deaf and dumb people as they have a chance to communicate with a greater number of people much easier. More than ever before, there is a plethora of info about sign language usage in the real world. Sign languages, and by extension the datasets available, are of two forms, isolated sign language and continuous sign language. The main difference between the two types… More >

  • Open Access

    ARTICLE

    A Cloud Based Sentiment Analysis through Logistic Regression in AWS Platform

    Mohemmed Sha*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 857-868, 2023, DOI:10.32604/csse.2023.031321 - 16 August 2022

    Abstract The use of Amazon Web Services is growing rapidly as more users are adopting the technology. It has various functionalities that can be used by large corporates and individuals as well. Sentiment analysis is used to build an intelligent system that can study the opinions of the people and help to classify those related emotions. In this research work, sentiment analysis is performed on the AWS Elastic Compute Cloud (EC2) through Twitter data. The data is managed to the EC2 by using elastic load balancing. The collected data is subjected to preprocessing approaches to clean More >

  • Open Access

    ARTICLE

    Feature Selection with Optimal Variational Auto Encoder for Financial Crisis Prediction

    Kavitha Muthukumaran*, K. Hariharanath, Vani Haridasan

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 887-901, 2023, DOI:10.32604/csse.2023.030627 - 16 August 2022

    Abstract Financial crisis prediction (FCP) received significant attention in the financial sector for decision-making. Proper forecasting of the number of firms possible to fail is important to determine the growth index and strength of a nation’s economy. Conventionally, numerous approaches have been developed in the design of accurate FCP processes. At the same time, classifier efficacy and predictive accuracy are inadequate for real-time applications. In addition, several established techniques carry out well to any of the specific datasets but are not adjustable to distinct datasets. Thus, there is a necessity for developing an effectual prediction technique… More >

  • Open Access

    ARTICLE

    Hybrid Bacterial Foraging Optimization with Sparse Autoencoder for Energy Systems

    Helen Josephine V L1, Ramchand Vedaiyan2, V. M. Arul Xavier3, Joy Winston J4, A. Jegatheesan5, D. Lakshmi6, Joshua Samuel Raj7,*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 701-714, 2023, DOI:10.32604/csse.2023.030611 - 16 August 2022

    Abstract The Internet of Things (IoT) technologies has gained significant interest in the design of smart grids (SGs). The increasing amount of distributed generations, maturity of existing grid infrastructures, and demand network transformation have received maximum attention. An essential energy storing model mostly the electrical energy stored methods are developing as the diagnoses for its procedure was becoming further compelling. The dynamic electrical energy stored model using Electric Vehicles (EVs) is comparatively standard because of its excellent electrical property and flexibility however the chance of damage to its battery was there in event of overcharging or… More >

  • Open Access

    ARTICLE

    Automated Machine Learning Enabled Cybersecurity Threat Detection in Internet of Things Environment

    Fadwa Alrowais1, Sami Althahabi2, Saud S. Alotaibi3, Abdullah Mohamed4, Manar Ahmed Hamza5,*, Radwa Marzouk6

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 687-700, 2023, DOI:10.32604/csse.2023.030188 - 16 August 2022

    Abstract Recently, Internet of Things (IoT) devices produces massive quantity of data from distinct sources that get transmitted over public networks. Cybersecurity becomes a challenging issue in the IoT environment where the existence of cyber threats needs to be resolved. The development of automated tools for cyber threat detection and classification using machine learning (ML) and artificial intelligence (AI) tools become essential to accomplish security in the IoT environment. It is needed to minimize security issues related to IoT gadgets effectively. Therefore, this article introduces a new Mayfly optimization (MFO) with regularized extreme learning machine (RELM)… More >

Displaying 731-740 on page 74 of 1310. Per Page