Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,310)
  • Open Access

    ARTICLE

    Project Assessment in Offshore Software Maintenance Outsourcing Using Deep Extreme Learning Machines

    Atif Ikram1,2,*, Masita Abdul Jalil1, Amir Bin Ngah1, Saqib Raza6, Ahmad Salman Khan3, Yasir Mahmood3,4, Nazri Kama4, Azri Azmi4, Assad Alzayed5

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1871-1886, 2023, DOI:10.32604/cmc.2023.030818 - 22 September 2022

    Abstract Software maintenance is the process of fixing, modifying, and improving software deliverables after they are delivered to the client. Clients can benefit from offshore software maintenance outsourcing (OSMO) in different ways, including time savings, cost savings, and improving the software quality and value. One of the hardest challenges for the OSMO vendor is to choose a suitable project among several clients’ projects. The goal of the current study is to recommend a machine learning-based decision support system that OSMO vendors can utilize to forecast or assess the project of OSMO clients. The projects belong to… More >

  • Open Access

    ARTICLE

    Image-Based Automatic Energy Meter Reading Using Deep Learning

    Muhammad Imran1,*, Hafeez Anwar2, Muhammad Tufail1, Abdullah Khan1, Murad Khan3, Dzati Athiar Ramli4

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 203-216, 2023, DOI:10.32604/cmc.2023.029834 - 22 September 2022

    Abstract We propose to perform an image-based framework for electrical energy meter reading. Our aim is to extract the image region that depicts the digits and then recognize them to record the consumed units. Combining the readings of serial numbers and energy meter units, an automatic billing system using the Internet of Things and a graphical user interface is deployable in a real-time setup. However, such region extraction and character recognition become challenging due to image variations caused by several factors such as partial occlusion due to dust on the meter display, orientation and scale variations… More >

  • Open Access

    ARTICLE

    Crops Leaf Diseases Recognition: A Framework of Optimum Deep Learning Features

    Shafaq Abbas1, Muhammad Attique Khan1, Majed Alhaisoni2, Usman Tariq3, Ammar Armghan4, Fayadh Alenezi4, Arnab Majumdar5, Orawit Thinnukool6,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1139-1159, 2023, DOI:10.32604/cmc.2023.028824 - 22 September 2022

    Abstract Manual diagnosis of crops diseases is not an easy process; thus, a computerized method is widely used. From a couple of years, advancements in the domain of machine learning, such as deep learning, have shown substantial success. However, they still faced some challenges such as similarity in disease symptoms and irrelevant features extraction. In this article, we proposed a new deep learning architecture with optimization algorithm for cucumber and potato leaf diseases recognition. The proposed architecture consists of five steps. In the first step, data augmentation is performed to increase the numbers of training samples.… More >

  • Open Access

    ARTICLE

    Change Point Detection for Process Data Analytics Applied to a Multiphase Flow Facility

    Rebecca Gedda1,*, Larisa Beilina2, Ruomu Tan3

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1737-1759, 2023, DOI:10.32604/cmes.2022.019764 - 20 September 2022

    Abstract Change point detection becomes increasingly important because it can support data analysis by providing labels to the data in an unsupervised manner. In the context of process data analytics, change points in the time series of process variables may have an important indication about the process operation. For example, in a batch process, the change points can correspond to the operations and phases defined by the batch recipe. Hence identifying change points can assist labelling the time series data. Various unsupervised algorithms have been developed for change point detection, including the optimisation approach which minimises a… More > Graphic Abstract

    Change Point Detection for Process Data Analytics Applied to a Multiphase Flow Facility

  • Open Access

    ARTICLE

    An Effective Machine-Learning Based Feature Extraction/Recognition Model for Fetal Heart Defect Detection from 2D Ultrasonic Imageries

    Bingzheng Wu1, Peizhong Liu1, Huiling Wu2, Shunlan Liu2, Shaozheng He2, Guorong Lv2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1069-1089, 2023, DOI:10.32604/cmes.2022.020870 - 31 August 2022

    Abstract Congenital heart defect, accounting for about 30% of congenital defects, is the most common one. Data shows that congenital heart defects have seriously affected the birth rate of healthy newborns. In Fetal and Neonatal Cardiology, medical imaging technology (2D ultrasonic, MRI) has been proved to be helpful to detect congenital defects of the fetal heart and assists sonographers in prenatal diagnosis. It is a highly complex task to recognize 2D fetal heart ultrasonic standard plane (FHUSP) manually. Compared with manual identification, automatic identification through artificial intelligence can save a lot of time, ensure the efficiency… More >

  • Open Access

    ARTICLE

    Structural Damage Identification Using Ensemble Deep Convolutional Neural Network Models

    Mohammad Sadegh Barkhordari1, Danial Jahed Armaghani2,*, Panagiotis G. Asteris3

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 835-855, 2023, DOI:10.32604/cmes.2022.020840 - 31 August 2022

    Abstract The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visual methods, which may result in an unreliable damage characterization due to inspector subjectivity or insufficient level of expertise. As a result, a robust, reliable, and repeatable method of damage identification is required. Ensemble learning algorithms for identifying structural damage are evaluated in this article, which use deep convolutional neural networks, including simple averaging, integrated stacking, separate stacking, and hybrid weighted averaging ensemble and differential evolution (WAE-DE) ensemble models. Damage identification is carried out on three types of More >

  • Open Access

    ARTICLE

    An Efficient Differential Evolution for Truss Sizing Optimization Using AdaBoost Classifier

    Tran-Hieu Nguyen*, Anh-Tuan Vu

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 429-458, 2023, DOI:10.32604/cmes.2022.020819 - 24 August 2022

    Abstract Design constraints verification is the most computationally expensive task in evolutionary structural optimization due to a large number of structural analyses that must be conducted. Building a surrogate model to approximate the behavior of structures instead of the exact structural analyses is a possible solution to tackle this problem. However, most existing surrogate models have been designed based on regression techniques. This paper proposes a novel method, called CaDE, which adopts a machine learning classification technique for enhancing the performance of the Differential Evolution (DE) optimization. The proposed method is separated into two stages. During… More >

  • Open Access

    REVIEW

    A Review of the Current Task Offloading Algorithms, Strategies and Approach in Edge Computing Systems

    Abednego Acheampong1, Yiwen Zhang1,*, Xiaolong Xu2, Daniel Appiah Kumah2

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 35-88, 2023, DOI:10.32604/cmes.2022.021394 - 24 August 2022

    Abstract Task offloading is an important concept for edge computing and the Internet of Things (IoT) because computationintensive tasks must be offloaded to more resource-powerful remote devices. Task offloading has several advantages, including increased battery life, lower latency, and better application performance. A task offloading method determines whether sections of the full application should be run locally or offloaded for execution remotely. The offloading choice problem is influenced by several factors, including application properties, network conditions, hardware features, and mobility, influencing the offloading system’s operational environment. This study provides a thorough examination of current task offloading… More >

  • Open Access

    REVIEW

    Analytical Models of Concrete Fatigue: A State-of-the-Art Review

    Xiaoli Wei1, D. A. Makhloof1,2, Xiaodan Ren1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 9-34, 2023, DOI:10.32604/cmes.2022.020160 - 24 August 2022

    Abstract Fatigue failure phenomena of the concrete structures under long-term low amplitude loading have attracted more attention. Some structures, such as wind power towers, offshore platforms, and high-speed railways, may resist millions of cycles loading during their intended lives. Over the past century, analytical methods for concrete fatigue are emerging. It is concluded that models for the concrete fatigue calculation can fall into four categories: the empirical model relying on fatigue tests, fatigue crack growth model in fracture mechanics, fatigue damage evolution model based on damage mechanics and advanced machine learning model. In this paper, a More >

  • Open Access

    REVIEW

    Machine Learning Techniques for Intrusion Detection Systems in SDN-Recent Advances, Challenges and Future Directions

    Gulshan Kumar1,*, Hamed Alqahtani2

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 89-119, 2023, DOI:10.32604/cmes.2022.020724 - 24 August 2022

    Abstract Software-Defined Networking (SDN) enables flexibility in developing security tools that can effectively and efficiently analyze and detect malicious network traffic for detecting intrusions. Recently Machine Learning (ML) techniques have attracted lots of attention from researchers and industry for developing intrusion detection systems (IDSs) considering logically centralized control and global view of the network provided by SDN. Many IDSs have developed using advances in machine learning and deep learning. This study presents a comprehensive review of recent work of ML-based IDS in context to SDN. It presents a comprehensive study of the existing review papers in More >

Displaying 721-730 on page 73 of 1310. Per Page