Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,310)
  • Open Access

    ARTICLE

    Machine Learning-based Inverse Model for Few-Mode Fiber Designs

    Bhagyalaxmi Behera1, Gyana Ranjan Patra1, Shailendra Kumar Varshney2, Mihir Narayan Mohanty1,*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 311-328, 2023, DOI:10.32604/csse.2023.029325 - 16 August 2022

    Abstract The medium for next-generation communication is considered as fiber for fast, secure communication and switching capability. Mode division and space division multiplexing provide an excellent switching capability with high data transmission rate. In this work, the authors have approached an inverse modeling technique using regression-based machine learning to design a weakly coupled few-mode fiber for facilitating mode division multiplexing. The technique is adapted to predict the accurate profile parameters for the proposed few-mode fiber to obtain the maximum number of modes. It is for a three-ring-core few-mode fiber for guiding five, ten, fifteen, and twenty More >

  • Open Access

    ARTICLE

    A Double Threshold Energy Detection-Based Neural Network for Cognitive Radio Networks

    Nada M. Elfatih1, Elmustafa Sayed Ali1,5, Maha Abdelhaq2, Raed Alsaqour3,*, Rashid A. Saeed4

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 329-342, 2023, DOI:10.32604/csse.2023.028528 - 16 August 2022

    Abstract

    In cognitive radio networks (CoR), the performance of cooperative spectrum sensing is improved by reducing the overall error rate or maximizing the detection probability. Several optimization methods are usually used to optimize the number of user-chosen for cooperation and the threshold selection. However, these methods do not take into account the effect of sample size and its effect on improving CoR performance. In general, a large sample size results in more reliable detection, but takes longer sensing time and increases complexity. Thus, the locally sensed sample size is an optimization problem. Therefore, optimizing the local

    More >

  • Open Access

    ARTICLE

    Route Planning for Autonomous Transmission of Large Sport Utility Vehicle

    V. A. Vijayakumar*, J. Shanthini, S. Karthik, K. Srihari

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 659-669, 2023, DOI:10.32604/csse.2023.028400 - 16 August 2022

    Abstract The autonomous driving aims at ensuring the vehicle to effectively sense the environment and use proper strategies to navigate the vehicle without the interventions of humans. Hence, there exist a prediction of the background scenes and that leads to discontinuity between the predicted and planned outputs. An optimal prediction engine is required that suitably reads the background objects and make optimal decisions. In this paper, the author(s) develop an autonomous model for vehicle driving using ensemble model for large Sport Utility Vehicles (SUVs) that uses three different modules involving (a) recognition model, (b) planning model… More >

  • Open Access

    ARTICLE

    Masked Face Recognition Using MobileNet V2 with Transfer Learning

    Ratnesh Kumar Shukla1,*, Arvind Kumar Tiwari2

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 293-309, 2023, DOI:10.32604/csse.2023.027986 - 16 August 2022

    Abstract Corona virus (COVID-19) is once in a life time calamity that has resulted in thousands of deaths and security concerns. People are using face masks on a regular basis to protect themselves and to help reduce corona virus transmission. During the on-going coronavirus outbreak, one of the major priorities for researchers is to discover effective solution. As important parts of the face are obscured, face identification and verification becomes exceedingly difficult. The suggested method is a transfer learning using MobileNet V2 based technology that uses deep feature such as feature extraction and deep learning model,… More >

  • Open Access

    ARTICLE

    Genetics Based Compact Fuzzy System for Visual Sensor Network

    Usama Abdur Rahman1,*, C. Jayakumar2, Deepak Dahiya3, C.R. Rene Robin4

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 409-426, 2023, DOI:10.32604/csse.2023.026846 - 16 August 2022

    Abstract As a component of Wireless Sensor Network (WSN), Visual-WSN (VWSN) utilizes cameras to obtain relevant data including visual recordings and static images. Data from the camera is sent to energy efficient sink to extract key-information out of it. VWSN applications range from health care monitoring to military surveillance. In a network with VWSN, there are multiple challenges to move high volume data from a source location to a target and the key challenges include energy, memory and I/O resources. In this case, Mobile Sinks(MS) can be employed for data collection which not only collects information… More >

  • Open Access

    ARTICLE

    Predictive-Analysis-based Machine Learning Model for Fraud Detection with Boosting Classifiers

    M. Valavan, S. Rita*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 231-245, 2023, DOI:10.32604/csse.2023.026508 - 16 August 2022

    Abstract Fraud detection for credit/debit card, loan defaulters and similar types is achievable with the assistance of Machine Learning (ML) algorithms as they are well capable of learning from previous fraud trends or historical data and spot them in current or future transactions. Fraudulent cases are scant in the comparison of non-fraudulent observations, almost in all the datasets. In such cases detecting fraudulent transaction are quite difficult. The most effective way to prevent loan default is to identify non-performing loans as soon as possible. Machine learning algorithms are coming into sight as adept at handling such More >

  • Open Access

    ARTICLE

    Suicide Ideation Detection of Covid Patients Using Machine Learning Algorithm

    R. Punithavathi1,*, S. Thenmozhi2, R. Jothilakshmi3, V. Ellappan4, Islam Md Tahzib Ul5

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 247-261, 2023, DOI:10.32604/csse.2023.025972 - 16 August 2022

    Abstract During Covid pandemic, many individuals are suffering from suicidal ideation in the world. Social distancing and quarantining, affects the patient emotionally. Affective computing is the study of recognizing human feelings and emotions. This technology can be used effectively during pandemic for facial expression recognition which automatically extracts the features from the human face. Monitoring system plays a very important role to detect the patient condition and to recognize the patterns of expression from the safest distance. In this paper, a new method is proposed for emotion recognition and suicide ideation detection in COVID patients. This More >

  • Open Access

    ARTICLE

    Prediction Model for a Good Learning Environment Using an Ensemble Approach

    S. Subha1,*, S. Baghavathi Priya2

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2081-2093, 2023, DOI:10.32604/csse.2023.028451 - 01 August 2022

    Abstract This paper presents an efficient prediction model for a good learning environment using Random Forest (RF) classifier. It consists of a series of modules; data preprocessing, data normalization, data split and finally classification or prediction by the RF classifier. The preprocessed data is normalized using min-max normalization often used before model fitting. As the input data or variables are measured at different scales, it is necessary to normalize them to contribute equally to the model fitting. Then, the RF classifier is employed for course selection which is an ensemble learning method and k-fold cross-validation (k = 10) is… More >

  • Open Access

    ARTICLE

    Investigation of Android Malware with Machine Learning Classifiers using Enhanced PCA Algorithm

    V. Joseph Raymond1,2,*, R. Jeberson Retna Raj1

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2147-2163, 2023, DOI:10.32604/csse.2023.028227 - 01 August 2022

    Abstract Android devices are popularly available in the commercial market at different price levels for various levels of customers. The Android stack is more vulnerable compared to other platforms because of its open-source nature. There are many android malware detection techniques available to exploit the source code and find associated components during execution time. To obtain a better result we create a hybrid technique merging static and dynamic processes. In this paper, in the first part, we have proposed a technique to check for correlation between features and classify using a supervised learning approach to avoid… More >

  • Open Access

    ARTICLE

    Optimal Machine Learning Enabled Performance Monitoring for Learning Management Systems

    Ashit Kumar Dutta1,*, Mazen Mushabab Alqahtani2, Yasser Albagory3, Abdul Rahaman Wahab Sait4, Majed Alsanea5

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2277-2292, 2023, DOI:10.32604/csse.2023.028107 - 01 August 2022

    Abstract Learning Management System (LMS) is an application software that is used in automation, delivery, administration, tracking, and reporting of courses and programs in educational sector. The LMS which exploits machine learning (ML) has the ability of accessing user data and exploit it for improving the learning experience. The recently developed artificial intelligence (AI) and ML models helps to accomplish effective performance monitoring for LMS. Among the different processes involved in ML based LMS, feature selection and classification processes find beneficial. In this motivation, this study introduces Glowworm-based Feature Selection with Machine Learning Enabled Performance Monitoring… More >

Displaying 741-750 on page 75 of 1310. Per Page