Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (58)
  • Open Access

    ARTICLE

    Combining Ability and Heterotic Effects in Newly Developed Early Maturing and High-Yielding Maize Hybrids under Low and Recommended Nitrogen Conditions

    Mohamed M. Kamara1,*, Nora M. Al Aboud2, Hameed Alsamadany3, Abeer M. Kutby4, Imen Ben Abdelmalek5, Diaa Abd El-Moneim6, Motrih Al-Mutiry7

    Phyton-International Journal of Experimental Botany, Vol.94, No.1, pp. 101-122, 2025, DOI:10.32604/phyton.2025.058033 - 24 January 2025

    Abstract Nitrogen (N) is a crucial nutrient vital for the growth and productivity of maize. However, excessive nitrogen application can result in numerous environmental and ecological problems, such as water pollution, biodiversity loss, and greenhouse gas emissions. Therefore, breeding maize hybrids resilient to low nitrogen conditions is crucial for sustainable agriculture, especially under low nitrogen conditions. Consequently, this study aimed to evaluate the combining ability and heterosis of maize lines, recognize promising hybrids, and study gene action controlling key traits under low and recommended N stress conditions. The half-diallel mating design hybridized seven maize inbreds, resulting… More >

  • Open Access

    ARTICLE

    Genetic Diversity and Combining Ability of Developed Maize Lines to Realize Heterotic and High Yielding Hybrids for Arid Conditions

    Mohamed M. Kamara1, Fatmah A. Safhi2, Nora M. Al Aboud3, Maha Aljabri3, Samah A. Alharbi3, Hesham S. Ghazzawy4,5, Mohammed O. Alshaharni6, Eman Fayad7, Wessam F. Felemban8,9, Diaa Abd El-Moneim10, Abdallah A. Hassanin11, Imen Ben Abdelmalek12,*, Abdelraouf M. Ali13, Elsayed Mansour14,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.12, pp. 3465-3485, 2024, DOI:10.32604/phyton.2024.058628 - 31 December 2024

    Abstract Developing high-yield maize hybrids is critical for sustaining maize production, especially in the face of rapid climate changes and the growing global population. Exploring the genetic diversity and combining ability in parental inbreds is needed for developing such high-yielding hybrids. Consequently, this study aimed at evaluating parental genetic diversity employing simple sequence repeats (SSR) markers, estimating effects of general (GCA) and specific (SCA) combining abilities for grain yield and yield contributing characters, identifying high yielding hybrids, and evaluating the association of SCA effects and performance of hybrids with genetic distance. Half-diallel mating scheme was utilized… More >

  • Open Access

    ARTICLE

    The Maize WRKY Transcription Factor ZmWRKY25 Respond Drought Stress in Transgenic Tobacco

    Jianbo Fei1,2,4, Zhibo Liu1, Piwu Wang1,3, Jing Qu2, Siyan Liu1, Shuyan Guan1,3,*, Yiyong Ma1,3

    Phyton-International Journal of Experimental Botany, Vol.93, No.12, pp. 3617-3635, 2024, DOI:10.32604/phyton.2024.052704 - 31 December 2024

    Abstract The WRKY transcription factors play important roles in various biological processes such as plant development, defense regulation, and stress response. Despite this, there is limited information available on drought-related WRKY genes in maize. Through RNA sequencing (RNA-seq) analysis, a WRKY transcription factor called ZmWRKY25 was identified in this study. ZmWRKY25 belongs to Group II and is localized in the nucleus. Protein interaction analysis revealed that ZmWRKY25 interacts with several proteins involved in the abscisic acid (ABA) signal pathway. Expression of ZmWRKY25 was found to be up-regulated in response to drought, salt, and ABA treatments in tobacco plants. More >

  • Open Access

    ARTICLE

    Seed Priming with Potassium Nitrate Can Enhance Salt Stress Tolerance in Maize

    Bushra Rehman1, Asma Zulfiqar1, Houneida Attia2, Rehana Sardar3, Muneera A. Saleh2, Khalid H. Alamer4, Ibtisam M. Alsudays5, Faisal Mehmood6, Qamar uz Zaman7,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.8, pp. 1819-1838, 2024, DOI:10.32604/phyton.2024.048780 - 30 August 2024

    Abstract Salinity is a major abiotic stress that hinders plant development and productivity and influences agricultural yield. Seed priming is a technique used to boost germination and seedling growth under abiotic stress. A pot experiment was conducted to evaluate the impact of seed priming with potassium nitrate (KNO3) at various levels (0%, 0.50%, 1.00% and 1.50%) under salt stress (0, 75, 100 mM NaCl) on two maize verities (MNH360 and 30T60) for the growth, development and metabolic attributes results revealed that in maize variety MNH360, KNO3 priming’s significantly enhanced growth parameters than in maize variety 30T60 under… More >

  • Open Access

    ARTICLE

    Cloning, Characterization and Transformation of Methyltransferase 2a Gene (Zmet2a) in Maize (Zea mays L.)

    Xin Qi1,#, Yu Wang1,#, Xing Zhang1, Xiaoshuang Wei1, Xinyang Liu1, Zhennan Wang1, Zhenhui Wang1,*, Fenglou Ling2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.7, pp. 1767-1779, 2024, DOI:10.32604/phyton.2024.052844 - 30 July 2024

    Abstract DNA methylation is an important epigenetic regulatory mechanism, it regulates gene expression by recruiting proteins involved in gene repression or by inhibiting the binding of transcription factor(s) to DNA. In this study, a novel methyltransferase 2a gene (Zmet2a) was cloned in maize and identified by polymerase chain reaction-base (PCR-base) using a bioinformatics strategy. The Zmet2a cDNA sequence is 2739 bp long and translates to 912 amino acid peptides. The Zmet2a protein revealed that it contains BAH and CHROMO structural domains, is a non-transmembrane protein that is hydrophilically unstable, and has no signal peptide structure. Meanwhile, we verified More >

  • Open Access

    ARTICLE

    Combining QTL Mapping and Multi-Omics Identify Candidate Genes for Nutritional Quality Traits during Grain Filling Stage in Maize

    Pengcheng Li1,2,#, Tianze Zhu1,#, Yunyun Wang1,2, Shuangyi Yin1, Xinjie Zhu1, Minggang Ji1, Wenye Rui1, Houmiao Wang1, Zefeng Yang1,2,*, Chenwu Xu1,2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.7, pp. 1441-1453, 2024, DOI:10.32604/phyton.2024.052219 - 30 July 2024

    Abstract The nutritional composition and overall quality of maize kernels are largely determined by the key chemical components: protein, oil, and starch. Nevertheless, the genetic basis underlying these nutritional quality traits during grain filling remains poorly understood. In this study, the concentrations of protein, oil, and starch were studied in 204 recombinant inbred lines resulting from a cross between DH1M and T877 at four different stages post-pollination. All the traits exhibited considerable phenotypic variation. During the grain-filling stage, the levels of protein and starch content generally increased, whereas oil content decreased, with significant changes observed between… More >

  • Open Access

    ARTICLE

    Application of Polygonum minus Extract in Enhancing Drought Tolerance in Maize by Regulating Osmotic and Antioxidant System

    Mingzhao Han1, Susilawati Kasim1,*, Zhongming Yang2, Xi Deng2, Md Kamal Uddin1, Noor Baity Saidi3, Effyanti Mohd Shuib1

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 213-226, 2024, DOI:10.32604/phyton.2024.047150 - 27 February 2024

    Abstract Drought stress is a major factor affecting plant growth and crop yield production. Plant extracts as natural biostimulants hold great potential to strengthen plants to overcome drought impacts. To explore the effect of Polygonum minus extract (PME) in enhancing drought tolerance in plants, a study was set up in a glasshouse environment using 10 different treatment combinations. PME foliar application were designed in CRD and effects were closely observed related to the growth, physiology, and antioxidant system changes in maize (Zea mays L.) under well-watered and drought conditions. The seaweed extract (SWE) was used as a comparison.… More >

  • Open Access

    ARTICLE

    Identification and Evaluation of Insect and Disease Resistance in Transgenic Cry1Ab13-1 and NPR1 Maize

    Yongjing Xi, Zhou Yang, Yukun Jin, Jing Qu, Shuyan Guan, Siyan Liu, Piwu Wang*

    Phyton-International Journal of Experimental Botany, Vol.92, No.4, pp. 1257-1274, 2023, DOI:10.32604/phyton.2023.025918 - 06 January 2023

    Abstract PCR detection, quantitative real-time PCR (q-RTPCR), outdoor insect resistance, and disease resistance identification were carried out for the detection of genetic stability and disease resistance through generations (T2, T3, and T4) in transgenic maize germplasms (S3002 and 349) containing the bivalent genes (insect resistance gene Cry1Ab13-1 and disease resistance gene NPR1) and their corresponding wild type. Results indicated that the target genes Cry1Ab13-1 and NPR1 were successfully transferred into both germplasms through tested generations; q-PCR confirmed the expression of Cry1Ab13-1 and NPR1 genes in roots, stems, and leaves of tested maize plants. In addition, S3002 and 349 bivalent gene-transformed lines More >

  • Open Access

    ARTICLE

    Identification and Characterization of ZF-HD Genes in Response to Abscisic Acid and Abiotic Stresses in Maize

    Xiaojie Jing1,2,3,#, Chunyan Li1,2,3,#, Chengjuan Luo1,2,3, Chaonan Yao1,2,3, Jiahao Zhang1,2,3, Tingting Zhu1,2,3, Jiuguang Wang1,2,3, Chaoxian Liu1,2,3,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.3, pp. 707-723, 2023, DOI:10.32604/phyton.2023.024338 - 29 November 2022

    Abstract The zinc finger homeodomain (ZF-HD) genes belong to the homeobox gene family, playing critical roles in flower development and stress response. Despite their importance, however, to date there has been no genome-wide identification and characterization of the ZF-HD genes that are probably involved in stress responses in maize. In this study, 24 ZF-HD genes were identified, and their chromosomal locations, protein properties, duplication patterns, structures, conserved motifs and expression patterns were investigated. The results revealed that the ZF-HD genes are unevenly distributed on nine chromosomes and that most of these genes lack introns. Six and… More >

  • Open Access

    REVIEW

    Distribution, Etiology, Molecular Genetics and Management Perspectives of Northern Corn Leaf Blight of Maize (Zea mays L.)

    M. Ashraf Ahangar1, Shabir Hussain Wani1,*, Zahoor A. Dar2, Jan Roohi1, Fayaz Mohiddin1, Monika Bansal3, Mukesh Choudhary4, Sumit K. Aggarwal4, S. A. Waza1, Khursheed Ahmad Dar5, Ayman El Sabagh6,7, Celaleddin Barutcular8, Omer Konuşkan9, Mohammad Anwar Hossain10,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.10, pp. 2111-2133, 2022, DOI:10.32604/phyton.2022.020721 - 30 May 2022

    Abstract Maize is cultivated extensively throughout the world and has the highest production among cereals. However, Northern corn leaf blight (NCLB) disease caused by Exherohilum turcicum, is the most devastating limiting factor of maize production. The disease causes immense losses to corn yield if it develops prior or during the tasseling and silking stages of crop development. It has a worldwide distribution and its development is favoured by cool to moderate temperatures with high relative humidity. The prevalence of the disease has increased in recent years and new races of the pathogen have been reported worldwide. The… More >

Displaying 1-10 on page 1 of 58. Per Page