Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access

    ARTICLE

    Hybrid Malware Variant Detection Model with Extreme Gradient Boosting and Artificial Neural Network Classifiers

    Asma A. Alhashmi1, Abdulbasit A. Darem1,*, Sultan M. Alanazi1, Abdullah M. Alashjaee2, Bader Aldughayfiq3, Fuad A. Ghaleb4,5, Shouki A. Ebad1, Majed A. Alanazi1

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3483-3498, 2023, DOI:10.32604/cmc.2023.041038

    Abstract In an era marked by escalating cybersecurity threats, our study addresses the challenge of malware variant detection, a significant concern for a multitude of sectors including petroleum and mining organizations. This paper presents an innovative Application Programmable Interface (API)-based hybrid model designed to enhance the detection performance of malware variants. This model integrates eXtreme Gradient Boosting (XGBoost) and an Artificial Neural Network (ANN) classifier, offering a potent response to the sophisticated evasion and obfuscation techniques frequently deployed by malware authors. The model’s design capitalizes on the benefits of both static and dynamic analysis to extract API-based features, providing a holistic… More >

  • Open Access

    ARTICLE

    Explainable Classification Model for Android Malware Analysis Using API and Permission-Based Features

    Nida Aslam1,*, Irfan Ullah Khan2, Salma Abdulrahman Bader2, Aisha Alansari3, Lama Abdullah Alaqeel2, Razan Mohammed Khormy2, Zahra Abdultawab AlKubaish2, Tariq Hussain4,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3167-3188, 2023, DOI:10.32604/cmc.2023.039721

    Abstract One of the most widely used smartphone operating systems, Android, is vulnerable to cutting-edge malware that employs sophisticated logic. Such malware attacks could lead to the execution of unauthorized acts on the victims’ devices, stealing personal information and causing hardware damage. In previous studies, machine learning (ML) has shown its efficacy in detecting malware events and classifying their types. However, attackers are continuously developing more sophisticated methods to bypass detection. Therefore, up-to-date datasets must be utilized to implement proactive models for detecting malware events in Android mobile devices. Therefore, this study employed ML algorithms to classify Android applications into malware… More >

  • Open Access

    ARTICLE

    Comparative Analysis of Machine Learning Models for PDF Malware Detection: Evaluating Different Training and Testing Criteria

    Bilal Khan1, Muhammad Arshad2, Sarwar Shah Khan3,4,*

    Journal of Cyber Security, Vol.5, pp. 1-11, 2023, DOI:10.32604/jcs.2023.042501

    Abstract The proliferation of maliciously coded documents as file transfers increase has led to a rise in sophisticated attacks. Portable Document Format (PDF) files have emerged as a major attack vector for malware due to their adaptability and wide usage. Detecting malware in PDF files is challenging due to its ability to include various harmful elements such as embedded scripts, exploits, and malicious URLs. This paper presents a comparative analysis of machine learning (ML) techniques, including Naive Bayes (NB), K-Nearest Neighbor (KNN), Average One Dependency Estimator (A1DE), Random Forest (RF), and Support Vector Machine (SVM) for PDF malware detection. The study… More >

  • Open Access

    ARTICLE

    Learning-Based Artificial Algae Algorithm with Optimal Machine Learning Enabled Malware Detection

    Khaled M. Alalayah1, Fatma S. Alrayes2, Mohamed K. Nour3, Khadija M. Alaidarous1, Ibrahim M. Alwayle1, Heba Mohsen4, Ibrahim Abdulrab Ahmed5, Mesfer Al Duhayyim6,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3103-3119, 2023, DOI:10.32604/csse.2023.034034

    Abstract Malware is a ‘malicious software program that performs multiple cyberattacks on the Internet, involving fraud, scams, nation-state cyberwar, and cybercrime. Such malicious software programs come under different classifications, namely Trojans, viruses, spyware, worms, ransomware, Rootkit, botnet malware, etc. Ransomware is a kind of malware that holds the victim’s data hostage by encrypting the information on the user’s computer to make it inaccessible to users and only decrypting it; then, the user pays a ransom procedure of a sum of money. To prevent detection, various forms of ransomware utilize more than one mechanism in their attack flow in conjunction with Machine… More >

  • Open Access

    ARTICLE

    Graph Convolutional Neural Network Based Malware Detection in IoT-Cloud Environment

    Faisal S. Alsubaei1, Haya Mesfer Alshahrani2, Khaled Tarmissi3, Abdelwahed Motwakel4,*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2897-2914, 2023, DOI:10.32604/iasc.2023.034907

    Abstract Cybersecurity has become the most significant research area in the domain of the Internet of Things (IoT) owing to the ever-increasing number of cyberattacks. The rapid penetration of Android platforms in mobile devices has made the detection of malware attacks a challenging process. Furthermore, Android malware is increasing on a daily basis. So, precise malware detection analytical techniques need a large number of hardware resources that are significantly resource-limited for mobile devices. In this research article, an optimal Graph Convolutional Neural Network-based Malware Detection and classification (OGCNN-MDC) model is introduced for an IoT-cloud environment. The proposed OGCNN-MDC model aims to… More >

  • Open Access

    ARTICLE

    Clustering-Aided Supervised Malware Detection with Specialized Classifiers and Early Consensus

    Murat Dener*, Sercan Gulburun

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1235-1251, 2023, DOI:10.32604/cmc.2023.036357

    Abstract One of the most common types of threats to the digital world is malicious software. It is of great importance to detect and prevent existing and new malware before it damages information assets. Machine learning approaches are used effectively for this purpose. In this study, we present a model in which supervised and unsupervised learning algorithms are used together. Clustering is used to enhance the prediction performance of the supervised classifiers. The aim of the proposed model is to make predictions in the shortest possible time with high accuracy and f1 score. In the first stage of the model, the… More >

  • Open Access

    ARTICLE

    A Survey on Visualization-Based Malware Detection

    Ahmad Moawad*, Ahmed Ismail Ebada, Aya M. Al-Zoghby

    Journal of Cyber Security, Vol.4, No.3, pp. 169-184, 2022, DOI:10.32604/jcs.2022.033537

    Abstract In computer security, the number of malware threats is increasing and causing damage to systems for individuals or organizations, necessitating a new detection technique capable of detecting a new variant of malware more efficiently than traditional anti-malware methods. Traditional anti-malware software cannot detect new malware variants, and conventional techniques such as static analysis, dynamic analysis, and hybrid analysis are time-consuming and rely on domain experts. Visualization-based malware detection has recently gained popularity due to its accuracy, independence from domain experts, and faster detection time. Visualization-based malware detection uses the image representation of the malware binary and applies image processing techniques… More >

  • Open Access

    ARTICLE

    An Adaptive-Feature Centric XGBoost Ensemble Classifier Model for Improved Malware Detection and Classification

    J. Pavithra*, S. Selvakumarasamy

    Journal of Cyber Security, Vol.4, No.3, pp. 135-151, 2022, DOI:10.32604/jcs.2022.031889

    Abstract Machine learning (ML) is often used to solve the problem of malware detection and classification, and various machine learning approaches are adapted to the problem of malware classification; still acquiring poor performance by the way of feature selection, and classification. To address the problem, an efficient novel algorithm for adaptive feature-centered XG Boost Ensemble Learner Classifier “AFC-XG Boost” is presented in this paper. The proposed model has been designed to handle varying data sets of malware detection obtained from Kaggle data set. The model turns the XG Boost classifier in several stages to optimize performance. At preprocessing stage, the data… More >

  • Open Access

    ARTICLE

    Byte-Level Function-Associated Method for Malware Detection

    Jingwei Hao*, Senlin Luo, Limin Pan

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 719-734, 2023, DOI:10.32604/csse.2023.033923

    Abstract The byte stream is widely used in malware detection due to its independence of reverse engineering. However, existing methods based on the byte stream implement an indiscriminate feature extraction strategy, which ignores the byte function difference in different segments and fails to achieve targeted feature extraction for various byte semantic representation modes, resulting in byte semantic confusion. To address this issue, an enhanced adversarial byte function associated method for malware backdoor attack is proposed in this paper by categorizing various function bytes into three functions involving structure, code, and data. The Minhash algorithm, grayscale mapping, and state transition probability statistics… More >

  • Open Access

    ARTICLE

    Malware Detection in Android IoT Systems Using Deep Learning

    Muhammad Waqar1, Sabeeh Fareed1, Ajung Kim2,*, Saif Ur Rehman Malik3, Muhammad Imran1, Muhammad Usman Yaseen1

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4399-4415, 2023, DOI:10.32604/cmc.2023.032984

    Abstract The Android Operating System (AOS) has been evolving since its inception and it has become one of the most widely used operating system for the Internet of Things (IoT). Due to the high popularity and reliability of AOS for IoT, it is a target of many cyber-attacks which can cause compromise of privacy, financial loss, data integrity, unauthorized access, denial of services and so on. The Android-based IoT (AIoT) devices are extremely vulnerable to various malwares due to the open nature and high acceptance of Android in the market. Recently, several detection preventive malwares are developed to conceal their malicious… More >

Displaying 1-10 on page 1 of 30. Per Page