Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (68)
  • Open Access

    ARTICLE

    Evaluation of Mechanical and Chemical Stimulations on Osteocalcin and Runx2 Expression in Mesenchymal Stem Cells

    Maryam Jazayeri1, Mohammad Ali Shokrgozar1, Nooshin Haghighipour1,2, Reza Mahdian3, Mehdi Farrokhi1, Shahin Bonakdar1, FereshtehMirahmadi1, Tannaz Nourizadeh Abbariki

    Molecular & Cellular Biomechanics, Vol.12, No.3, pp. 197-213, 2015, DOI:10.3970/mcb.2015.012.197

    Abstract The osseous tissue repair and regeneration have great importance in orthopedic and maxillofacial surgery. Tissue engineering makes it possible to cure different tissue abnormalities using autologous grafts. It is now obvious that mechanical loading has essential role in directing cells to differentiation. In this study, the influence of cyclic uniaxial loading and its combination with chemical factors on expression of osteogenic markers was investigated. Rat bone marrow-derived stem cells were isolated and cultured. In one group cells were maintained in chemical induction medium. In another group cells were subjected to cyclic uniaxial strain with 3% amplitude and 0.3 Hz frequency… More >

  • Open Access

    ARTICLE

    Comparing the Effect of Uniaxial Cyclic Mechanical Stimulation and Chemical Factors on Myogenin and Myh2 Expression in Mouse Embryonic and Bone Marrow Derived Mesenchymal Stem Cells

    Norizadeh Abbariki Tannaz*,†, Shokrgozar Mohammad Ali†,‡, Haghighipour Nooshin*,§, Aghdami Nasser, Mahdian RezakII, Amanzadeh Amir*, Jazayeri Maryam*,†

    Molecular & Cellular Biomechanics, Vol.11, No.1, pp. 19-37, 2014, DOI:10.3970/mcb.2014.011.019

    Abstract Background: Environmental factors affect stem cell differentiation. In addition to chemical factors, mechanical signals have been suggested to enhance myogenic differentiation of stem cells. Therefore, this study was undertaken to illustrate and compare the effect of chemical and mechanical stimuli on Myogenin (MyoG) and Myosin heavy chani 2 (Myh2) expression of mouse bone marrowderived mesenchymal stem cells (BMSCs) and embryonic stem cells (ESCs). Methods: After isolation and expansion of BMSCs and generation of embryoid bodies and spontaneous differentiation of ESCs, cells were examined in 4 groups: (1) control group: untreated cells; (2) chemical group: cells incubated in myogenic medium (5-azacythidine… More >

  • Open Access

    ARTICLE

    Purmorphamine Promotes Matrix Mineralization and Cytoskeletal Changes in Human Umbilical Cord Mesenchymal Stem Cells

    Syed A Jamal*

    Molecular & Cellular Biomechanics, Vol.10, No.4, pp. 267-273, 2013, DOI:10.3970/mcb.2013.010.267

    Abstract Human Umbilical Cord Mesenchymal Stem Cells (hUCMSCs) were subjected to in vitro osteogenic differentiation using a novel combination of signaling molecules including BMP-2 and purmorphamine. Differentiation outcomes were assessed by calcein staining and by microscopic examination of the cytoskeleton. Calcein staining showed appreciable degree of calcium mineralization in cell culture, and changes in the morphological attributes of differentiating cells were observed vis-a-vis the actin cytoskeleton. Finally, positive calcein staining, altered cytoskeletal profile, and stress fiber formation in treated cells demonstrated, for the first time, a potentially synergistic interplay between BMP-2 and the hedgehog agonist, purmorphamine. This study lends support to… More >

  • Open Access

    ARTICLE

    Mechanical Stretch-Induced Changes in Cell Morphology and mRNA Expression of Tendon/Ligament-Associated Genes in Rat Bone-Marrow Mesenchymal Stem Cells

    Guanbin Song∗,†,‡, Qing Luo*, Baiyao Xu*, Yang Ju

    Molecular & Cellular Biomechanics, Vol.7, No.3, pp. 165-174, 2010, DOI:10.3970/mcb.2010.007.165

    Abstract It has been demonstrated that mechanical stimulation plays a vital role in regulating the proliferation and differentiation of stem cells. However, little is known about the effects of mechanical stress on tendon/ligament development from mesenchymal stem cells (MSCs). Here, using a custom-made cell-stretching device, we studied the effects of mechanical stretching on the cell morphology and mRNA expression of several key genes modulating tendon/ligament genesis. We demonstrate that bone-marrow-derived rat MSCs (rMSCs), when subjected to cyclic uniaxial stretching, express obvious detectable mRNAs for tenascin C and scleraxis, a unique maker of tendon/ligament formation, and significantly increased levels of type I… More >

  • Open Access

    ARTICLE

    In vitro Response of the Bone Marrow-Derived Mesenchymal Stem Cells Seeded in a Type-I Collagen-Glycosaminoglycan Scaffold for Skin Wound Repair Under the Mechanical Loading Condition

    Masanori Kobayashi, Myron Spector

    Molecular & Cellular Biomechanics, Vol.6, No.4, pp. 217-228, 2009, DOI:10.3970/mcb.2009.006.217

    Abstract In order to achieve successful wound repair by regenerative tissue engineering using mesenchymal stem cells (MSCs), it is important to understand the response of stem cells in the scaffold matrix to mechanical stress.
    To investigate the clinical effects of mechanical stress on the behavior of cells in scaffolds, bone marrow-derived mesenchymal stem cells (MSCs) were grown on a type-I collagen-glycosaminoglycan (GAG) scaffold matrix for one week under cyclic stretching loading conditions.
    The porous collagen-GAG scaffold matrix for skin wound repair was prepared, the harvested canine MSCs were seeded on the scaffold, and cultured under three kinds of cyclic… More >

  • Open Access

    ARTICLE

    Regulation of Cyclic Longitudinal Mechanical Stretch on Proliferation of Human Bone Marrow Mesenchymal Stem Cells

    Guanbin Song∗,†,‡, Yang Ju∗,†,§, Hitoshi Soyama*, Toshiro Ohashi, Masaaki Sato

    Molecular & Cellular Biomechanics, Vol.4, No.4, pp. 201-210, 2007, DOI:10.3970/mcb.2007.004.201

    Abstract Mechanical stimulation is critical to both physiological and pathological states of living cells. Although a great deal of research has been done on biological and biochemical regulation of the behavior of bone marrow mesenchymal stem cells (MSCs), the influence of biomechanical factors on their behavior is still not fully documented. In this study, we investigated the modulation of mechanical stretch magnitude, frequency, and duration on the human marrow mesenchymal stem cells (hMSCs) proliferation by an in vitro model system using a mechanical stretch loading apparatus, and optimized the stretch regime for the proliferation of hMSCs. We applied 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl tetrasodium… More >

  • Open Access

    ARTICLE

    Focal Adhesion Kinase Signaling Controls Cyclic Tensile Strain Enhanced Collagen I-Induced Osteogenic Differentiation of Human Mesenchymal Stem Cells

    Donald F. Ward Jr.*, William A. Williams*, Nicole E. Schapiro*, Samuel R. Christy*, Genevieve L. Weber*, Megan Salt, Robert F. Klees*, Adele Boskey, George E. Plopper ∗,‡

    Molecular & Cellular Biomechanics, Vol.4, No.4, pp. 177-188, 2007, DOI:10.3970/mcb.2007.004.177

    Abstract Focal adhesion kinase (FAK) is a key integrator of integrin-mediated signals from the extracellular matrix to the cytoskeleton and downstream signaling molecules. FAK is activated by phosphorylation at specific tyrosine residues, which then stimulate downstream signaling including the ERK1/2 pathway, leading to a variety of cellular responses. In this study, we examined the effects of FAK point mutations at tyrosine residues (Y397, Y925, Y861, and Y576/7) on osteogenic differentiation of human mesenchymal stem cells exposed to collagen I and cyclic tensile strain. Our results demonstrate that FAK signaling emanating from Y397, Y925, and to a lesser extent Y576/7, but not… More >

  • Open Access

    REVIEW

    Regulation of Vascular Smooth Muscle Cells and Mesenchymal Stem Cells by Mechanical Strain

    Kyle Kurpinski1,2,3, Jennifer Park1,2,3, Rahul G. Thakar1,2,3, Song Li1,2

    Molecular & Cellular Biomechanics, Vol.3, No.1, pp. 21-34, 2006, DOI:10.3970/mcb.2006.003.021

    Abstract Vascular smooth muscle cells (SMCs) populate in the media of the blood vessel, and play an important role in the control of vasoactivity and the remodeling of the vessel wall. Blood vessels are constantly subjected to hemodynamic stresses, and the pulsatile nature of the blood flow results in a cyclic mechanical strain in the vessel walls. Accumulating evidence in the past two decades indicates that mechanical strain regulates vascular SMC phenotype, function and matrix remodeling. Bone marrow mesenchymal stem cell (MSC) is a potential cell source for vascular regeneration therapy, and may be used to generate SMCs to construct tissue-engineered… More >

Displaying 61-70 on page 7 of 68. Per Page