Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (137)
  • Open Access

    ARTICLE

    Artificial Intelligence Based Sentiment Analysis for Health Crisis Management in Smart Cities

    Anwer Mustafa Hilal1, Badria Sulaiman Alfurhood2, Fahd N. Al-Wesabi3,4, Manar Ahmed Hamza1,*, Mesfer Al Duhayyim5, Huda G. Iskandar4,6

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 143-157, 2022, DOI:10.32604/cmc.2022.021502 - 03 November 2021

    Abstract Smart city promotes the unification of conventional urban infrastructure and information technology (IT) to improve the quality of living and sustainable urban services in the city. To accomplish this, smart cities necessitate collaboration among the public as well as private sectors to install IT platforms to collect and examine massive quantities of data. At the same time, it is essential to design effective artificial intelligence (AI) based tools to handle healthcare crisis situations in smart cities. To offer proficient services to people during healthcare crisis time, the authorities need to look closer towards them. Sentiment… More >

  • Open Access

    ARTICLE

    Energy Aware Data Collection with Route Planning for 6G Enabled UAV Communication

    Mesfer Al Duhayyim1, Marwa Obayya2, Fahd N. Al-Wesabi3,4, Anwer Mustafa Hilal5,*, Mohammed Rizwanullah5, Majdy M. Eltahir6

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 825-842, 2022, DOI:10.32604/cmc.2022.021490 - 03 November 2021

    Abstract With technological advancements in 6G and Internet of Things (IoT), the incorporation of Unmanned Aerial Vehicles (UAVs) and cellular networks has become a hot research topic. At present, the proficient evolution of 6G networks allows the UAVs to offer cost-effective and timely solutions for real-time applications such as medicine, tracking, surveillance, etc. Energy efficiency, data collection, and route planning are crucial processes to improve the network communication. These processes are highly difficult owing to high mobility, presence of non-stationary links, dynamic topology, and energy-restricted UAVs. With this motivation, the current research paper presents a novel… More >

  • Open Access

    ARTICLE

    Metaheuristic Resource Allocation Strategy for Cluster Based 6G Industrial Applications

    Anwer Mustafa Hilal1,*, Lamia Osman Widaa2, Fahd N. Al-Wesabi3, Mohammad Medani3, Manar Ahmed Hamza1, Mesfer Al Duhayyim4

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 667-681, 2022, DOI:10.32604/cmc.2022.021338 - 03 November 2021

    Abstract The emergence of Beyond 5G (B5G) and 6G networks translated personal and industrial operations highly effective, reliable, and gainful by speeding up the growth of next generation Internet of Things (IoT). Industrial equipment in 6G encompasses a huge number of wireless sensors, responsible for collecting massive quantities of data. At the same time, 6G network can take real-world intelligent decisions and implement automated equipment operations. But the inclusion of different technologies into the system increased its energy consumption for which appropriate measures need to be taken. This has become mandatory for optimal resource allocation in… More >

  • Open Access

    ARTICLE

    Intelligent Chimp Metaheuristics Optimization with Data Encryption Protocol for WSN

    P. Manjula1,*, Dr. S. Baghavathi Priya2

    Intelligent Automation & Soft Computing, Vol.32, No.1, pp. 573-587, 2022, DOI:10.32604/iasc.2022.020969 - 26 October 2021

    Abstract Recent developments in low power electronic devices integrated into wireless communication technologies resulted in the domain of wireless sensor networks (WSN), which finds in applications in diverse data gathering and tracking applications. Since WSN is mostly deployed in harsh and inaccessible environments, it is necessary to design energy efficient and security solutions. The clustering technique is an effective way to lengthen the lifetime of WSN. But most of the clustering techniques elect cluster heads (CHs) irrespective of clusters. To resolve this issue, this paper presents a new intelligent metaheuristics based energy aware clustering with data… More >

  • Open Access

    ARTICLE

    Optimal Placement and Sizing of Distributed Generation Using Metaheuristic Algorithm

    D. Nageswari1,*, N. Kalaiarasi2, G. Geethamahalakshmi1

    Computer Systems Science and Engineering, Vol.41, No.2, pp. 493-509, 2022, DOI:10.32604/csse.2022.020539 - 25 October 2021

    Abstract Power loss and voltage uncertainty are the major issues prevalently faced in the design of distribution systems. But such issues can be resolved through effective usage of networking reconfiguration that has a combination of Distributed Generation (DG) units from distribution networks. In this point of view, optimal placement and sizing of DGs are effective ways to boost the performance of power systems. The optimum allocation of DGs resolves various problems namely, power loss, voltage profile improvement, enhanced reliability, system stability, and performance. Several research works have been conducted to address the distribution system problems in… More >

  • Open Access

    ARTICLE

    Hybrid Metaheuristics Web Service Composition Model for QoS Aware Services

    P. Rajeswari*, K. Jayashree

    Computer Systems Science and Engineering, Vol.41, No.2, pp. 511-524, 2022, DOI:10.32604/csse.2022.020352 - 25 October 2021

    Abstract Recent advancements in cloud computing (CC) technologies signified that several distinct web services are presently developed and exist at the cloud data centre. Currently, web service composition gains maximum attention among researchers due to its significance in real-time applications. Quality of Service (QoS) aware service composition concerned regarding the election of candidate services with the maximization of the whole QoS. But these models have failed to handle the uncertainties of QoS. The resulting QoS of composite service identified by the clients become unstable and subject to risks of failing composition by end-users. On the other… More >

  • Open Access

    ARTICLE

    MLA: A New Mutated Leader Algorithm for Solving Optimization Problems

    Fatemeh Ahmadi Zeidabadi1, Sajjad Amiri Doumari1, Mohammad Dehghani2, Zeinab Montazeri3, Pavel Trojovský4,*, Gaurav Dhiman5

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5631-5649, 2022, DOI:10.32604/cmc.2022.021072 - 11 October 2021

    Abstract Optimization plays an effective role in various disciplines of science and engineering. Optimization problems should either be optimized using the appropriate method (i.e., minimization or maximization). Optimization algorithms are one of the efficient and effective methods in providing quasi-optimal solutions for these type of problems. In this study, a new algorithm called the Mutated Leader Algorithm (MLA) is presented. The main idea in the proposed MLA is to update the members of the algorithm population in the search space based on the guidance of a mutated leader. In addition to information about the best member… More >

  • Open Access

    ARTICLE

    IRKO: An Improved Runge-Kutta Optimization Algorithm for Global Optimization Problems

    R. Manjula Devi1, M. Premkumar2, Pradeep Jangir3, Mohamed Abdelghany Elkotb4,5, Rajvikram Madurai Elavarasan6, Kottakkaran Sooppy Nisar7,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4803-4827, 2022, DOI:10.32604/cmc.2022.020847 - 11 October 2021

    Abstract Optimization is a key technique for maximizing or minimizing functions and achieving optimal cost, gains, energy, mass, and so on. In order to solve optimization problems, metaheuristic algorithms are essential. Most of these techniques are influenced by collective knowledge and natural foraging. There is no such thing as the best or worst algorithm; instead, there are more effective algorithms for certain problems. Therefore, in this paper, a new improved variant of a recently proposed metaphorless Runge-Kutta Optimization (RKO) algorithm, called Improved Runge-Kutta Optimization (IRKO) algorithm, is suggested for solving optimization problems. The IRKO is formulated… More >

  • Open Access

    ARTICLE

    A Novel Binary Emperor Penguin Optimizer for Feature Selection Tasks

    Minakshi Kalra1, Vijay Kumar2, Manjit Kaur3, Sahar Ahmed Idris4, Şaban Öztürk5, Hammam Alshazly6,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 6239-6255, 2022, DOI:10.32604/cmc.2022.020682 - 11 October 2021

    Abstract Nowadays, due to the increase in information resources, the number of parameters and complexity of feature vectors increases. Optimization methods offer more practical solutions instead of exact solutions for the solution of this problem. The Emperor Penguin Optimizer (EPO) is one of the highest performing meta-heuristic algorithms of recent times that imposed the gathering behavior of emperor penguins. It shows the superiority of its performance over a wide range of optimization problems thanks to its equal chance to each penguin and its fast convergence features. Although traditional EPO overcomes the optimization problems in continuous search… More >

  • Open Access

    ARTICLE

    Training Multi-Layer Perceptron with Enhanced Brain Storm Optimization Metaheuristics

    Nebojsa Bacanin1, Khaled Alhazmi2,*, Miodrag Zivkovic1, K. Venkatachalam3, Timea Bezdan1, Jamel Nebhen4

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 4199-4215, 2022, DOI:10.32604/cmc.2022.020449 - 27 September 2021

    Abstract In the domain of artificial neural networks, the learning process represents one of the most challenging tasks. Since the classification accuracy highly depends on the weights and biases, it is crucial to find its optimal or suboptimal values for the problem at hand. However, to a very large search space, it is very difficult to find the proper values of connection weights and biases. Employing traditional optimization algorithms for this issue leads to slow convergence and it is prone to get stuck in the local optima. Most commonly, back-propagation is used for multi-layer-perceptron training and… More >

Displaying 121-130 on page 13 of 137. Per Page