Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,714)
  • Open Access

    ARTICLE

    Importance of Adaptive Photometric Augmentation for Different Convolutional Neural Network

    Saraswathi Sivamani1, Sun Il Chon1, Do Yeon Choi1, Dong Hoon Lee2, Ji Hwan Park1,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4433-4452, 2022, DOI:10.32604/cmc.2022.026759 - 21 April 2022

    Abstract Existing segmentation and augmentation techniques on convolutional neural network (CNN) has produced remarkable progress in object detection. However, the nominal accuracy and performance might be downturned with the photometric variation of images that are directly ignored in the training process, along with the context of the individual CNN algorithm. In this paper, we investigate the effect of a photometric variation like brightness and sharpness on different CNN. We observe that random augmentation of images weakens the performance unless the augmentation combines the weak limits of photometric variation. Our approach has been justified by the experimental… More >

  • Open Access

    ARTICLE

    Two-Dimensional Projection-Based Wireless Intrusion Classification Using Lightweight EfficientNet

    Muhamad Erza Aminanto1,2,*, Ibnu Rifqi Purbomukti3, Harry Chandra2, Kwangjo Kim4

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5301-5314, 2022, DOI:10.32604/cmc.2022.026749 - 21 April 2022

    Abstract Internet of Things (IoT) networks leverage wireless communication protocols, which adversaries can exploit. Impersonation attacks, injection attacks, and flooding are several examples of different attacks existing in Wi-Fi networks. Intrusion Detection System (IDS) became one solution to distinguish those attacks from benign traffic. Deep learning techniques have been intensively utilized to classify the attacks. However, the main issue of utilizing deep learning models is projecting the data, notably tabular data, into an image. This study proposes a novel projection from wireless network attacks data into a grid-based image for feeding one of the Convolutional Neural… More >

  • Open Access

    ARTICLE

    Network Traffic Obfuscation System for IIoT-Cloud Control Systems

    Yangjae Lee1, Sung Hoon Baek2, Jung Taek Seo3, Ki-Woong Park1,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4911-4929, 2022, DOI:10.32604/cmc.2022.026657 - 21 April 2022

    Abstract One of the latest technologies enabling remote control, operational efficiency upgrades, and real-time big-data monitoring in an industrial control system (ICS) is the IIoT-Cloud ICS, which integrates the Industrial Internet of Things (IIoT) and the cloud into the ICS. Although an ICS benefits from the application of IIoT and the cloud in terms of cost reduction, efficiency improvement, and real-time monitoring, the application of this technology to an ICS poses an unprecedented security risk by exposing its terminal devices to the outside world. An adversary can collect information regarding senders, recipients, and prime-time slots through… More >

  • Open Access

    ARTICLE

    Detecting IoT Botnet in 5G Core Network Using Machine Learning

    Ye-Eun Kim1, Min-Gyu Kim2, Hwankuk Kim2,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4467-4488, 2022, DOI:10.32604/cmc.2022.026581 - 21 April 2022

    Abstract As Internet of Things (IoT) devices with security issues are connected to 5G mobile networks, the importance of IoT Botnet detection research in mobile network environments is increasing. However, the existing research focused on AI-based IoT Botnet detection research in wired network environments. In addition, the existing research related to IoT Botnet detection in ML-based mobile network environments have been conducted up to 4G. Therefore, this paper conducts a study on ML-based IoT Botnet traffic detection in the 5G core network. The binary and multiclass classification was performed to compare simple normal/malicious detection and normal/three-type More >

  • Open Access

    ARTICLE

    Energy Aware Secure Cyber-Physical Systems with Clustered Wireless Sensor Networks

    Masoud Alajmi1, Mohamed K. Nour2, Siwar Ben Haj Hassine3, Mimouna Abdullah Alkhonaini4, Manar Ahmed Hamza5,*, Ishfaq Yaseen5, Abu Sarwar Zamani5, Mohammed Rizwanullah5

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5499-5513, 2022, DOI:10.32604/cmc.2022.026187 - 21 April 2022

    Abstract Recently, cyber physical system (CPS) has gained significant attention which mainly depends upon an effective collaboration with computation and physical components. The greatly interrelated and united characteristics of CPS resulting in the development of cyber physical energy systems (CPES). At the same time, the rising ubiquity of wireless sensor networks (WSN) in several application areas makes it a vital part of the design of CPES. Since security and energy efficiency are the major challenging issues in CPES, this study offers an energy aware secure cyber physical systems with clustered wireless sensor networks using metaheuristic algorithms… More >

  • Open Access

    ARTICLE

    Brain Tumor Auto-Segmentation on Multimodal Imaging Modalities Using Deep Neural Network

    Elias Hossain1, Md. Shazzad Hossain2, Md. Selim Hossain3, Sabila Al Jannat4, Moontahina Huda5, Sameer Alsharif6, Osama S. Faragallah7, Mahmoud M. A. Eid8, Ahmed Nabih Zaki Rashed9,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4509-4523, 2022, DOI:10.32604/cmc.2022.025977 - 21 April 2022

    Abstract Due to the difficulties of brain tumor segmentation, this paper proposes a strategy for extracting brain tumors from three-dimensional Magnetic Resonance Image (MRI) and Computed Tomography (CT) scans utilizing 3D U-Net Design and ResNet50, taken after by conventional classification strategies. In this inquire, the ResNet50 picked up accuracy with 98.96%, and the 3D U-Net scored 97.99% among the different methods of deep learning. It is to be mentioned that traditional Convolutional Neural Network (CNN) gives 97.90% accuracy on top of the 3D MRI. In expansion, the image fusion approach combines the multimodal images and makes a fused… More >

  • Open Access

    ARTICLE

    Week Ahead Electricity Power and Price Forecasting Using Improved DenseNet-121 Method

    Muhammad Irfan1, Ali Raza2,*, Faisal Althobiani3, Nasir Ayub4,5, Muhammad Idrees6, Zain Ali7, Kashif Rizwan4, Abdullah Saeed Alwadie1, Saleh Mohammed Ghonaim3, Hesham Abdushkour3, Saifur Rahman1, Omar Alshorman1, Samar Alqhtani8

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4249-4265, 2022, DOI:10.32604/cmc.2022.025863 - 21 April 2022

    Abstract In the Smart Grid (SG) residential environment, consumers change their power consumption routine according to the price and incentives announced by the utility, which causes the prices to deviate from the initial pattern. Thereby, electricity demand and price forecasting play a significant role and can help in terms of reliability and sustainability. Due to the massive amount of data, big data analytics for forecasting becomes a hot topic in the SG domain. In this paper, the changing and non-linearity of consumer consumption pattern complex data is taken as input. To minimize the computational cost and… More >

  • Open Access

    ARTICLE

    A Novel Convolutional Neural Network Model for Malaria Cell Images Classification

    Esraa Hassan1,3,*, Mahmoud Y. Shams1, Noha A. Hikal2, Samir Elmougy3

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5889-5907, 2022, DOI:10.32604/cmc.2022.025629 - 21 April 2022

    Abstract Infectious diseases are an imminent danger that faces human beings around the world. Malaria is considered a highly contagious disease. The diagnosis of various diseases, including malaria, was performed manually, but it required a lot of time and had some human errors. Therefore, there is a need to investigate an efficient and fast automatic diagnosis system. Deploying deep learning algorithms can provide a solution in which they can learn complex image patterns and have a rapid improvement in medical image analysis. This study proposed a Convolutional Neural Network (CNN) model to detect malaria automatically. A More >

  • Open Access

    ARTICLE

    Arabic Music Genre Classification Using Deep Convolutional Neural Networks (CNNs)

    Laiali Almazaydeh1,*, Saleh Atiewi2, Arar Al Tawil3, Khaled Elleithy4

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5443-5458, 2022, DOI:10.32604/cmc.2022.025526 - 21 April 2022

    Abstract Genres are one of the key features that categorize music based on specific series of patterns. However, the Arabic music content on the web is poorly defined into its genres, making the automatic classification of Arabic audio genres challenging. For this reason, in this research, our objective is first to construct a well-annotated dataset of five of the most well-known Arabic music genres, which are: Eastern Takht, Rai, Muwashshah, the poem, and Mawwal, and finally present a comprehensive empirical comparison of deep Convolutional Neural Networks (CNNs) architectures on Arabic music genres classification. In this work, More >

  • Open Access

    ARTICLE

    A Method for Detecting Non-Mask Wearers Based on Regression Analysis

    Dokyung Hwang1, Hyeonmin Ro1, Naejoung Kwak2, Jinsang Hwang3, Dongju Kim1,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4411-4431, 2022, DOI:10.32604/cmc.2022.025378 - 21 April 2022

    Abstract A novel practical and universal method of mask-wearing detection has been proposed to prevent viral respiratory infections. The proposed method quickly and accurately detects mask and facial regions using well-trained You Only Look Once (YOLO) detector, then applies image coordinates of the detected bounding box (bbox). First, the data that is used to train our model is collected under various circumstances such as light disturbances, distances, time variations, and different climate conditions. It also contains various mask types to detect in general and universal application of the model. To detect mask-wearing status, it is important… More >

Displaying 2291-2300 on page 230 of 3714. Per Page