Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,355)
  • Open Access

    ARTICLE

    An Intelligent Multi-Stage GA–SVM Hybrid Optimization Framework for Feature Engineering and Intrusion Detection in Internet of Things Networks

    Isam Bahaa Aldallal1, Abdullahi Abdu Ibrahim1,*, Saadaldeen Rashid Ahmed2,3

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.075212 - 10 February 2026

    Abstract The rapid growth of IoT networks necessitates efficient Intrusion Detection Systems (IDS) capable of addressing dynamic security threats under constrained resource environments. This paper proposes a hybrid IDS for IoT networks, integrating Support Vector Machine (SVM) and Genetic Algorithm (GA) for feature selection and parameter optimization. The GA reduces the feature set from 41 to 7, achieving a 30% reduction in overhead while maintaining an attack detection rate of 98.79%. Evaluated on the NSL-KDD dataset, the system demonstrates an accuracy of 97.36%, a recall of 98.42%, and an F1-score of 96.67%, with a low false More >

  • Open Access

    ARTICLE

    A Comparative Benchmark of Machine and Deep Learning for Cyberattack Detection in IoT Networks

    Enzo Hoummady*, Fehmi Jaafar

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074897 - 10 February 2026

    Abstract With the proliferation of Internet of Things (IoT) devices, securing these interconnected systems against cyberattacks has become a critical challenge. Traditional security paradigms often fail to cope with the scale and diversity of IoT network traffic. This paper presents a comparative benchmark of classic machine learning (ML) and state-of-the-art deep learning (DL) algorithms for IoT intrusion detection. Our methodology employs a two-phased approach: a preliminary pilot study using a custom-generated dataset to establish baselines, followed by a comprehensive evaluation on the large-scale CICIoTDataset2023. We benchmarked algorithms including Random Forest, XGBoost, CNN, and Stacked LSTM. The… More >

  • Open Access

    ARTICLE

    A Hybrid Clique-Based Method with Structural Feature Node Extraction for Community Detection in Overlapping Networks

    Sicheng Ma1, Lixiang Zhang2,*, Guocai Chen3, Zeyu Dai3, Junru Zhu4, Wei Fang1,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073572 - 10 February 2026

    Abstract Community detection is a fundamental problem in network analysis for identifying densely connected node clusters, with successful applications in diverse fields like social networks, recommendation systems, biology, and cyberattack detection. Overlapping community detection refers to the case of a node belonging to multiple communities simultaneously, which is a much more meaningful and challenging task. Graph representation learning with Evolutionary Computation has been studied well in overlapping community detection to deal with complex network structures and characteristics. However, most of them focus on searching the entire solution space, which can be inefficient and lead to inadequate… More >

  • Open Access

    ARTICLE

    Non-Euclidean Models for Fraud Detection in Irregular Temporal Data Environments

    Boram Kim, Guebin Choi*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073500 - 10 February 2026

    Abstract Traditional anomaly detection methods often assume that data points are independent or exhibit regularly structured relationships, as in Euclidean data such as time series or image grids. However, real-world data frequently involve irregular, interconnected structures, requiring a shift toward non-Euclidean approaches. This study introduces a novel anomaly detection framework designed to handle non-Euclidean data by modeling transactions as graph signals. By leveraging graph convolution filters, we extract meaningful connection strengths that capture relational dependencies often overlooked in traditional methods. Utilizing the Graph Convolutional Networks (GCN) framework, we integrate graph-based embeddings with conventional anomaly detection models, More >

  • Open Access

    ARTICLE

    A Multi-Scale Graph Neural Networks Ensemble Approach for Enhanced DDoS Detection

    Noor Mueen Mohammed Ali Hayder1,2, Seyed Amin Hosseini Seno2,*, Hamid Noori2, Davood Zabihzadeh3, Mehdi Ebady Manaa4,5

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073236 - 10 February 2026

    Abstract Distributed Denial of Service (DDoS) attacks are one of the severe threats to network infrastructure, sometimes bypassing traditional diagnosis algorithms because of their evolving complexity. Present Machine Learning (ML) techniques for DDoS attack diagnosis normally apply network traffic statistical features such as packet sizes and inter-arrival times. However, such techniques sometimes fail to capture complicated relations among various traffic flows. In this paper, we present a new multi-scale ensemble strategy given the Graph Neural Networks (GNNs) for improving DDoS detection. Our technique divides traffic into macro- and micro-level elements, letting various GNN models to get… More >

  • Open Access

    ARTICLE

    Effective Deep Learning Models for the Semantic Segmentation of 3D Human MRI Kidney Images

    Roshni Khedgaonkar1, Pravinkumar Sonsare2, Kavita Singh1, Ayman Altameem3, Hameed R. Farhan4, Salil Bharany5, Ateeq Ur Rehman6,*, Ahmad Almogren7,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.072651 - 10 February 2026

    Abstract Recent studies indicate that millions of individuals suffer from renal diseases, with renal carcinoma, a type of kidney cancer, emerging as both a chronic illness and a significant cause of mortality. Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) have become essential tools for diagnosing and assessing kidney disorders. However, accurate analysis of these medical images is critical for detecting and evaluating tumor severity. This study introduces an integrated hybrid framework that combines three complementary deep learning models for kidney tumor segmentation from MRI images. The proposed framework fuses a customized U-Net and Mask R-CNN… More >

  • Open Access

    ARTICLE

    Optimizing RPL Routing Using Tabu Search to Improve Link Stability and Energy Consumption in IoT Networks

    Mehran Tarif1, Mohammadhossein Homaei2,*, Abbas Mirzaei3, Babak Nouri-Moghaddam3

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.071676 - 10 February 2026

    Abstract The Routing Protocol for Low-power and Lossy Networks (RPL) is widely used in Internet of Things (IoT) systems, where devices usually have very limited resources. However, RPL still faces several problems, such as high energy usage, unstable links, and inefficient routing decisions, which reduce the overall network performance and lifetime. In this work, we introduce TABURPL, an improved routing method that applies Tabu Search (TS) to optimize the parent selection process. The method uses a combined cost function that considers Residual Energy, Transmission Energy, Distance to the Sink, Hop Count, Expected Transmission Count (ETX), and More >

  • Open Access

    ARTICLE

    VitSeg-Det & TransTra-Count: Networks for Robust Crack Detection and Measurement in Dynamic Video Scenes

    Langyue Zhao1,2, Yubin Yuan3,*, Yiquan Wu2,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.070563 - 10 February 2026

    Abstract Regular detection of pavement cracks is essential for infrastructure maintenance. However, existing methods often ignore the challenges such as the continuous evolution of crack features between video frames and the difficulty of defect quantification. To this end, this paper proposes an integrated framework for pavement crack detection, segmentation, tracking and counting based on Transformer. Firstly, we design the VitSeg-Det network, which is an integrated detection and segmentation network that can accurately locate and segment tiny cracks in complex scenes. Second, the TransTra-Count system is developed to automatically count the number of defects by combining defect More >

  • Open Access

    ARTICLE

    Historical Transportation GIS (1880–2020) for Decision Making in Sustainable Development Goals

    Bárbara Polo-Martín*

    Revue Internationale de Géomatique, Vol.35, pp. 53-78, 2026, DOI:10.32604/rig.2026.071069 - 05 February 2026

    Abstract The expansion of transportation networks, including railways and ports, has been a major force driving urban growth, mobility, and socio-economic transformations since the Industrial Revolution. This study utilizes Historical Geographic Information Systems to examine the global evolution of transportation infrastructure, focusing on railways and ports, from 1880 to 2020. The dataset enables a multidimensional analysis of how transportation systems have shaped cities, influenced regional development, and helped to make possible sustainability efforts. By offering insights into transport accessibility, land-use changes, and economic connectivity, the study provides a robust empirical foundation for understanding long-term infrastructure dynamics. More >

  • Open Access

    ARTICLE

    Spatio-Temporal Graph Neural Networks with Elastic-Band Transform for Solar Radiation Prediction

    Guebin Choi*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.073985 - 29 January 2026

    Abstract This study proposes a novel forecasting framework that simultaneously captures the strong periodicity and irregular meteorological fluctuations inherent in solar radiation time series. Existing approaches typically define inter-regional correlations using either simple correlation coefficients or distance-based measures when applying spatio-temporal graph neural networks (STGNNs). However, such definitions are prone to generating spurious correlations due to the dominance of periodic structures. To address this limitation, we adopt the Elastic-Band Transform (EBT) to decompose solar radiation into periodic and amplitude-modulated components, which are then modeled independently with separate graph neural networks. The periodic component, characterized by strong More >

Displaying 1-10 on page 1 of 1355. Per Page