Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    A Federated Learning Incentive Mechanism for Dynamic Client Participation: Unbiased Deep Learning Models

    Jianfeng Lu1, Tao Huang1, Yuanai Xie2,*, Shuqin Cao1, Bing Li3

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 619-634, 2025, DOI:10.32604/cmc.2025.060094 - 26 March 2025

    Abstract The proliferation of deep learning (DL) has amplified the demand for processing large and complex datasets for tasks such as modeling, classification, and identification. However, traditional DL methods compromise client privacy by collecting sensitive data, underscoring the necessity for privacy-preserving solutions like Federated Learning (FL). FL effectively addresses escalating privacy concerns by facilitating collaborative model training without necessitating the sharing of raw data. Given that FL clients autonomously manage training data, encouraging client engagement is pivotal for successful model training. To overcome challenges like unreliable communication and budget constraints, we present ENTIRE, a contract-based dynamic… More >

  • Open Access

    ARTICLE

    FedAdaSS: Federated Learning with Adaptive Parameter Server Selection Based on Elastic Cloud Resources

    Yuwei Xu, Baokang Zhao*, Huan Zhou, Jinshu Su

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 609-629, 2024, DOI:10.32604/cmes.2024.053462 - 20 August 2024

    Abstract The rapid expansion of artificial intelligence (AI) applications has raised significant concerns about user privacy, prompting the development of privacy-preserving machine learning (ML) paradigms such as federated learning (FL). FL enables the distributed training of ML models, keeping data on local devices and thus addressing the privacy concerns of users. However, challenges arise from the heterogeneous nature of mobile client devices, partial engagement of training, and non-independent identically distributed (non-IID) data distribution, leading to performance degradation and optimization objective bias in FL training. With the development of 5G/6G networks and the integration of cloud computing… More >

  • Open Access

    ARTICLE

    Blockchain-Enabled Federated Learning for Privacy-Preserving Non-IID Data Sharing in Industrial Internet

    Qiuyan Wang, Haibing Dong*, Yongfei Huang, Zenglei Liu, Yundong Gou

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 1967-1983, 2024, DOI:10.32604/cmc.2024.052775 - 15 August 2024

    Abstract Sharing data while protecting privacy in the industrial Internet is a significant challenge. Traditional machine learning methods require a combination of all data for training; however, this approach can be limited by data availability and privacy concerns. Federated learning (FL) has gained considerable attention because it allows for decentralized training on multiple local datasets. However, the training data collected by data providers are often non-independent and identically distributed (non-IID), resulting in poor FL performance. This paper proposes a privacy-preserving approach for sharing non-IID data in the industrial Internet using an FL approach based on blockchain… More >

  • Open Access

    ARTICLE

    A Client Selection Method Based on Loss Function Optimization for Federated Learning

    Yan Zeng1,2,3, Siyuan Teng1, Tian Xiang4,*, Jilin Zhang1,2,3, Yuankai Mu5, Yongjian Ren1,2,3,*, Jian Wan1,2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 1047-1064, 2023, DOI:10.32604/cmes.2023.027226 - 23 April 2023

    Abstract Federated learning is a distributed machine learning method that can solve the increasingly serious problem of data islands and user data privacy, as it allows training data to be kept locally and not shared with other users. It trains a global model by aggregating locally-computed models of clients rather than their raw data. However, the divergence of local models caused by data heterogeneity of different clients may lead to slow convergence of the global model. For this problem, we focus on the client selection with federated learning, which can affect the convergence performance of the… More > Graphic Abstract

    A Client Selection Method Based on Loss Function Optimization for Federated Learning

Displaying 1-10 on page 1 of 4. Per Page