Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (96)
  • Open Access

    ARTICLE

    Formation of Highly Oriented Cellulose Nanocrystal Films by Spin Coating Film from Aqueous Suspensions

    Mingzhe Jiang1, S. Nicole DeMass1, D. Ross Economy2, Thomas Shackleton1, Christopher L. Kitchens1*

    Journal of Renewable Materials, Vol.4, No.5, pp. 377-387, 2016, DOI:10.7569/JRM.2016.634131

    Abstract Spin coating was used to cast a uniform film of cellulose nanocrystals with low surface roughness and variable thickness as a function of operational parameters that include rotational speed and dispense suspension concentration. The film thickness was controllable from 40 nm up to 1 μm with surface roughness an order of magnitude less than blade-coating methods. The degree of radial orientation was qualitatively assessed and shown to be variable with processing parameters. Under specific processing conditions, the formation of striation patterns was observed and associated with film drying instability. The striation patterns are periodic in nature where the wavelength and… More >

  • Open Access

    ARTICLE

    Cellulose Nanocrystals versus Polyethylene Glycol as Toughening Agents for Poly(Lactic Acid)-Poly(Acrylic Acid) Graft Copolymer

    Jose Luis Orellana, Michael Mauhar, Christopher L. Kitchens*

    Journal of Renewable Materials, Vol.4, No.5, pp. 340-350, 2016, DOI:10.7569/JRM.2016.634126

    Abstract Polylactic acid (PLA) is one of the most widely used biodegradable polymers due to the ability to synthesize it economically at industrial scale and its favorable properties for many consumer products. However, the rigid nature of PLA is not desirable for specific applications, requiring the incorporation of effective bioderived additives in order to enhance the PLA toughness and broaden applications. In this work, PLA was modified by graft polymerization of polyacrylic acid (PLA-g-PAA) to increase the hydrophilicity to promote compatibilization of cellulose nanocrystals (CNCs) or high molecular polyethylene glycol (PEG). CNCs were found to act as a nucleating agent for… More >

  • Open Access

    ARTICLE

    Nanocellulose in Spun Continuous Fibers: A Review and Future Outlook

    Craig Clemons

    Journal of Renewable Materials, Vol.4, No.5, pp. 327-339, 2016, DOI:10.7569/JRM.2016.634112

    Abstract Continuous fibers are commonly manufactured for a wide variety of uses such as filters, textiles, and composites. For example, most fibrous reinforcements (e.g., carbon fiber, glass fiber) for advanced composites are continuous fibers or yarns, fabrics, and preforms made from them. This allows broad flexibility in design and manufacturing approaches by controlling fiber orientation and architecture. However, there has been growing interest in preparing continuous fibers from biobased materials such as plants. Of particular recent interest are nanocelluloses, which are projected to be less expensive than many other nanomaterials and have the potential to be produced in large volumes. They… More >

  • Open Access

    REVIEW

    Opportunities for Cellulose Nanomaterials in Packaging Films: A Review and Future Trends

    Nicole M. Stark

    Journal of Renewable Materials, Vol.4, No.5, pp. 313-326, 2016, DOI:10.7569/JRM.2016.634115

    Abstract Performance requirements for packaging films may include barrier properties, transparency, flexibility, and tensile strength. Conventional packaging materials, such as plastic films and laminates, are typically made from petroleum-based polymers. Currently, there is a drive to develop sustainable packaging materials. These alternative materials must be able to be manufactured economically and on a commercial scale, exhibit barrier properties and transparency, and provide adequate mechanical performance. As a biobased, renewable material, cellulose nanomaterials (CNs) are ideally suited to be used in sustainable packaging applications. CNs include cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) and each can provide benefit to packaging films. Manufactured… More >

  • Open Access

    REVIEW

    Nanocellulose-Enabled Electronics, Energy Harvesting Devices, Smart Materials and Sensors: A Review

    Ronald Sabo1*, Aleksey Yermakov2, Chiu Tai Law3, Rani Elhajjar4

    Journal of Renewable Materials, Vol.4, No.5, pp. 297-312, 2016, DOI:10.7569/JRM.2016.634114

    Abstract Cellulose nanomaterials have a number of interesting and unique properties that make them well-suited for use in electronics applications such as energy harvesting devices, actuators and sensors. Cellulose nanofibrils and nanocrystals have good mechanical properties, high transparency, and low coefficient of thermal expansion, among other properties that facilitate both active and inactive roles in electronics and related devices. For example, these nanomaterials have been demonstrated to operate as substrates for flexible electronics and displays, to improve the efficiency of photovoltaics, to work as a component of magnetostrictive composites and to act as a suitable lithium ion battery separator membrane. A… More >

  • Open Access

    ARTICLE

    Modulation of Acid Hydrolysis Reaction Time for the Extraction of Cellulose Nanocrystals from Posidonia oceanica Leaves

    F. Luzi, E. Fortunati*, D. Puglia, R. Petrucci, J.M. Kenny, L. Torre

    Journal of Renewable Materials, Vol.4, No.3, pp. 190-198, 2016, DOI:10.7569/JRM.2015.634134

    Abstract In this research, the revalorization of Posidonia oceanica leaf sea waste was studied and the acid hydrolysis processing times were modulated in order to optimize the extraction of cellulose nanocrystals (CNCs). The obtained CNCs were deeply investigated. A two-step treatment was applied to extract cellulose nanocrystals from Posidonia oceanica leaves. First, a chemical treatment leads to the removal of lignin and production of holocellulose, while the second chemical process of acid hydrolysis allows the obtainment of cellulose nanocrystals in aqueous suspension. The unbleached and bleached leaves and cellulose nanocrystals were characterized by using thermogravimetric analysis, infrared spectroscopy and morphological investigation;… More >

  • Open Access

    ARTICLE

    High Magnetic Field Annealing Dependent the Morphology and Microstructure of Nanocrystalline Co/Ni Bilayered Films

    Donggang Li1,2, Alexandra Levesque2, Qiang Wang1,3,2, Agnieszka Franczak2, Chun Wu1, Jean-Paul Chopart2, Jicheng He1

    CMC-Computers, Materials & Continua, Vol.30, No.3, pp. 207-218, 2012, DOI:10.3970/cmc.2012.030.207

    Abstract Co/Ni bilayered films were prepared on ITO glass by electrodeposition assisted with a magnetic field up to 0.5T aligned parallel to the electrode surface. The effect of a high magnetic field annealing up to 12T on morphology and microstructure of the post-deposited films was investigated by field emission scanning electronic microscopy (FE-SEM), X-ray diffraction (XRD) and atomic force microscopy (AFM). Grain shape and grain boundary in the Co/Ni morphology were modified dramatically when the high magnetic field was applied during the annealing process. Magnetic anisotropy appeared in the films due to the preferential orientation of fcc-CoNi alloy in comparison with… More >

  • Open Access

    ARTICLE

    Thickness Effect of Nanocrystalline Layer on the Deformation Mechanism of Amorphous/Crystalline Multilayered Structure

    Wen-Jay Lee1,*, Yu-Chien Lo2, Anchen Yang3, Kuanpeng Chen3, Nan-Yow Chen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.2, pp. 293-304, 2019, DOI:10.32604/cmes.2019.06620

    Abstract Different thickness of amorphous/nanocrystalline multi-layered structure can be used to modulate the strength and ductility of the composite materials. In this work, molecular dynamics simulations were conducted to study the thickness effect of nanocrystalline layer on mechanical properties and deformation behavior of the Cu64Zr36/Cu multi-layer structure. The stress-strain relationship, local stress, local strain, and deformation mechanism are investigated. The results reveal that the change of thickness of the crystalline layer significantly affects the mechanical properties and deformation behavior. As the strain at the elastic region, the amorphous Cu64Zr36 layer dominates the mechanical behavior, leading the fact that Young’s modulus, first… More >

  • Open Access

    ARTICLE

    Estimation of Isotropic Hyperelasticity Constitutive Models to Approximate the Atomistic Simulation Data for Aluminium and Tungsten Monocrystals

    Marcin Maździarz1, Marcin Gajewski2

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.2, pp. 123-150, 2015, DOI:10.3970/cmes.2015.105.123

    Abstract In this paper, the choice and parametrisation of finite deformation polyconvex isotropic hyperelastic models to describe the behaviour of a class of defect-free monocrystalline metal materials at the molecular level is examined. The article discusses some physical, mathematical and numerical demands which in our opinion should be fulfilled by elasticity models to be useful. A set of molecular numerical tests for aluminium and tungsten providing data for the fitting of a hyperelastic model was performed, and an algorithm for parametrisation is discussed. The proposed models with optimised parameters are superior to those used in non-linear mechanics of crystals. More >

  • Open Access

    ARTICLE

    Numerical Determination on Effective Elastic Moduli of 3-D Solid with a Large Number of Microcracks using FM-DBEM

    Hongtao Wang1,2, Haitao Wang2, Lie Jin2, Zhenhan Yao3

    CMES-Computer Modeling in Engineering & Sciences, Vol.94, No.6, pp. 529-552, 2013, DOI:10.3970/cmes.2013.094.529

    Abstract Since only the boundary of the analyzed domain needs to be discretized, the boundary element method (BEM) inherently has the advantages of solving crack problems. In this paper, a micromechanics BEM scheme is applied to determine the effective elastic moduli of three-dimensional (3-D) solids containing a large number of parallel or randomly oriented microcracks. The 3-D analyses accelerated by the fast multipole method were carried out to investigate the relations between the effective elastic moduli and the microcrack density parameter. Numerical examples show that the results agree well with the available analytical solution and known micromechanics models. From the numerical… More >

Displaying 81-90 on page 9 of 96. Per Page