Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (122)
  • Open Access

    REVIEW

    Biomedical overview of melanin. 2. Updating molecular modeling, synthesis mechanism, and supramolecular properties regarding melanoma therapy

    JUAN CARLOS STOCKERT1,2,*, ALFONSO BLÁZQUEZ-CASTRO3

    BIOCELL, Vol.46, No.6, pp. 1391-1415, 2022, DOI:10.32604/biocell.2022.019493

    Abstract

    Melanins represent one of the most ancient and important group of natural macromolecular pigments. They have multiple biological roles in almost all organisms across the Phyla, examples being photoprotection, anti-oxidative action, radical scavenger activity, and heavy metal removal. From the biomedical point of view, melanocytes are involved in the origin of melanoma tumors, and the main therapeutic advances for their treatment have been revised in Part 1 of this review. The chemical structure of eumelanin is a biological concern of great importance, and therefore, exploring theoretical molecular models and synthesis mechanisms will be here described, as well as molecular orbital… More >

  • Open Access

    ARTICLE

    HCl-Induced Hg0 Transformation over CuMn2O4 Sorbent

    Aijia Zhang, Yingju Yang, Jing Liu*, Junyan Ding

    Energy Engineering, Vol.119, No.2, pp. 499-510, 2022, DOI:10.32604/ee.2022.015504

    Abstract CuMn2O4 spinel has been regarded as a highly efficient sorbent for Hg0 capture from flue gas. The regenerability and recyclability of CuMn2O4 sorbent are mainly associated with the mercury speciation adsorbed on its surface. However, the effect mechanism of HCl on Hg0 transformation over CuMn2O4 sorbent is still elusive. Experiments were conducted to understand the effect of HCl on Hg0 transformation over CuMn2O4 sorbent. The results indicate that CuMn2O4 sorbent is a mesoporous material and possesses a good thermal stability. CuMn2O4 shows >95% Hg0 removal efficiency in a wide temperature window of 50–350°C. The favorable electron-transfer environment caused by the… More >

  • Open Access

    ARTICLE

    The Intelligent Trajectory Optimization of Multistage Rocket with Gauss Pseudo-Spectral Method

    Lihua Zhu1,*, Yu Wang1, Zhiqiang Wu1, Cheire Cheng2

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 291-303, 2022, DOI:10.32604/iasc.2022.024252

    Abstract The rapid developments of artificial intelligence in the last decade are influencing aerospace engineering to a great extent and research in this context is proliferating. In this paper, the trajectory optimization of a three-stage launch vehicle in the powering phase subject to the sun-synchronous orbit is considered. To solve the optimal control problem, the Gauss pseudo-spectral method (GPM) is used to transform the optimization model to a nonlinear programming (NLP) problem and sequential quadratic programming is applied to find the optimal solution. However, the sensitivity of the initial guess may cost the solver significant time to do the Newton iteration… More >

  • Open Access

    ARTICLE

    Computational Investigation of Multiband EMNZ Metamaterial Absorber for Terahertz Applications

    Ismail Hossain1, Md Samsuzzaman2, Mohd Hafiz Baharuddin3,*, Norsuzlin Binti Mohd Sahar1, Mandeep Singh Jit Singh1, Mohammad Tariqul Islam3

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3905-3920, 2022, DOI:10.32604/cmc.2022.022027

    Abstract This study presents an Epsilon Mu near-zero (EMNZ) nanostructured metamaterial absorber (NMMA) for visible regime applications. The resonator and dielectric layers are made of tungsten (W) and quartz (fused), where the working band is expanded by changing the resonator layer's design. Due to perfect impedance matching with plasmonic resonance characteristics, the proposed NMMA structure is achieved an excellent absorption of 99.99% at 571 THz, 99.50% at 488.26 THz, and 99.32% at 598 THz frequencies. The absorption mechanism is demonstrated by the theory of impedance, electric field, and power loss density distributions, respectively. The geometric parameters are explored and analyzed to… More >

  • Open Access

    ARTICLE

    Experimental Synthesis of Polyacrylic-Type Superabsorbent Polymer and Analysis of Its Internal Curing Performances

    Jin Yang1,2, Wen Liang1, Xingyang He1,2,*, Ying Su1,2, Fulong Wang1, Tie Wang1, Jianxiang Huang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.1, pp. 15-27, 2022, DOI:10.32604/fdmp.2022.018135

    Abstract A solution polymerization method has been used to synthesize a polyacrylic-type superabsorbent polymer (SAP). The influence of various influential factors, such as the temperature, neutralization degree, cross-linking agent, and initiator, on the water absorption capacity of SAP has been investigated. The results show that the absorption can display a non-monotonic behavior depending on the synthesis conditions. The absorption can also change according to the pH, ion types and ion concentration. As the pH value increases, the water absorption capacity decreases significantly. It also decreases if the Na+ concentration becomes higher and becomes particularly low in solutions containing Mg2+. With the… More >

  • Open Access

    ARTICLE

    Polarization Insensitive Broadband Zero Indexed Nano-Meta Absorber for Optical Region Applications

    Ismail Hossain1, Md Samsuzzaman2, Ahasanul Hoque3, Mohd Hafiz Baharuddin3, Norsuzlin Binti Mohd Sahar1, Mohammad Tariqul Islam3,*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 993-1009, 2022, DOI:10.32604/cmc.2022.021435

    Abstract Broadband response metamaterial absorber (MMA) remains a challenge among researchers. A nanostructured new zero-indexed metamaterial (ZIM) absorber is presented in this study, constructed with a hexagonal shape resonator for optical region applications. The design consists of a resonator and dielectric layers made with tungsten and quartz (Fused). The proposed absorbent exhibits average absorption of more than 0.8972 (89.72%) within the visible wavelength of 450–600 nm and nearly perfect absorption of 0.99 (99%) at 461.61 nm. Based on computational analysis, the proposed absorber can be characterized as ZIM. The developments of ZIM absorbers have demonstrated plasmonic resonance characteristics and a perfect… More >

  • Open Access

    ARTICLE

    Potential genomic biomarkers of obesity and its comorbidities for phthalates and bisphenol A mixture: In silico toxicogenomic approach

    KATARINA BARALIć1,*, KATARINA ŽIVANčEVIć1, DRAGICA BoŽIĆ1, DANYEL JENNEN2, ALEKSANDRA BUHA DJORDJEVIC1, EVICA ANTONIJEVIć MILJAKOVIć1, DANIJELA ĐUKIć-ĆOSIć1

    BIOCELL, Vol.46, No.2, pp. 519-533, 2022, DOI:10.32604/biocell.2022.018271

    Abstract This in silico toxicogenomic study aims to explore the relationship between phthalates and bisphenol A (BPA) co-exposure and obesity, as well as its comorbid conditions, in order to construct a possible set of genomic biomarkers. The Comparative Toxicogenomics Database (CTD; http://ctd.mdibl.org) was used as the main data mining tool, along with GeneMania (https://genemania.org), ToppGene Suite (https://toppgene.cchmc.org) and DisGeNET (http://www.disgenet.org). Among the phthalates, bis(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) were chosen as the most frequently curated phthalates in CTD, which also share similar mechanisms of toxicity. DEHP, DBP and BPA interacted with 84, 90 and 194 obesity-related genes/proteins, involved in… More >

  • Open Access

    VIEWPOINT

    Nitric oxide and hydrogen sulfide share regulatory functions in higher plant events

    FRANCISCO J. CORPAS*, SALVADOR GONZÁLEZ-GORDO, MARTA RODRÍGUEZ-RUIZ, MARÍA A. MUÑOZ-VARGAS, JOSÉ M. PALMA

    BIOCELL, Vol.46, No.1, pp. 1-5, 2022, DOI:10.32604/biocell.2021.017300

    Abstract Nitric oxide (NO) and hydrogen sulfide (H2S) are two molecules that share signaling properties in plant and animal cells. NO and H2S originate two families of derived molecules designated reactive nitrogen and sulfur species (RNS and RSS, respectively). These molecules are responsible for certain protein regulatory processes through posttranslational modifications (PTMs), being the most remarkable S-nitrosation and persulfidation, which affect the thiol group of cysteine residues. NO and H2S can also exert regulatory functions due to their interaction through the iron present in proteins that contain heme groups or iron-sulfur clusters, as reported mainly in animal cells. However, the available… More >

  • Open Access

    ARTICLE

    An Optimized Scale-Invariant Feature Transform Using Chamfer Distance in Image Matching

    Tamara A. Al-Shurbaji1, Khalid A. AlKaabneh2, Issam Alhadid3,*, Ra’ed Masa’deh4

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 971-985, 2022, DOI:10.32604/iasc.2022.019654

    Abstract Scale-Invariant Feature Transform is an image matching algorithm used to match objects of two images by extracting the feature points of target objects in each image. Scale-Invariant Feature Transform suffers from long processing time due to embedded calculations which reduces the overall speed of the technique. This research aims to enhance SIFT processing time by imbedding Chamfer Distance Algorithm to find the distance between image descriptors instead of using Euclidian Distance Algorithm used in SIFT. Chamfer Distance Algorithm requires less computational time than Euclidian Distance Algorithm because it selects the shortest path between any two points when the distance is… More >

  • Open Access

    ARTICLE

    A Study on the Pyrolytic Characteristics of Xanthoceras Sorbifolia Husk and Its Crude Cellulose Extract

    Hongmei Zhang1,*, Quancheng Zhou2

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.6, pp. 1101-1111, 2021, DOI:10.32604/fdmp.2021.017202

    Abstract Huge amounts of Xanthoceras sorbifolia husks (XSH) are typically discarded after oil extraction. Since pyrolysis represents a promising solution to harness the bio-energy of XSH, in the present work the pyrolytic and kinetic characteristics of XSH and related crude cellulose extract (CCE) were studied considering different rates of heating (10, 30 and 50°C min−1). The pyrolysis activation energy, pre-exponential factors and mechanism function were computed using different models namely Popescu, FWO (Flynn-Wall-Ozawa) and KAS (Kissinger-Akahira-Sunose). The pyrolysis process was articulated into three stages: dehydration (Stage I), primary devolatilization (Stage II), residual decomposition (Stage III). Marked variations in the average activation… More >

Displaying 51-60 on page 6 of 122. Per Page