Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (209)
  • Open Access

    ARTICLE

    Multi-Stream Temporally Enhanced Network for Video Salient Object Detection

    Dan Xu*, Jiale Ru, Jinlong Shi

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 85-104, 2024, DOI:10.32604/cmc.2023.045258 - 30 January 2024

    Abstract Video salient object detection (VSOD) aims at locating the most attractive objects in a video by exploring the spatial and temporal features. VSOD poses a challenging task in computer vision, as it involves processing complex spatial data that is also influenced by temporal dynamics. Despite the progress made in existing VSOD models, they still struggle in scenes of great background diversity within and between frames. Additionally, they encounter difficulties related to accumulated noise and high time consumption during the extraction of temporal features over a long-term duration. We propose a multi-stream temporal enhanced network (MSTENet)… More >

  • Open Access

    REVIEW

    A Review on the Application of Deep Learning Methods in Detection and Identification of Rice Diseases and Pests

    Xiaozhong Yu1,2,*, Jinhua Zheng1,2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 197-225, 2024, DOI:10.32604/cmc.2023.043943 - 30 January 2024

    Abstract In rice production, the prevention and management of pests and diseases have always received special attention. Traditional methods require human experts, which is costly and time-consuming. Due to the complexity of the structure of rice diseases and pests, quickly and reliably recognizing and locating them is difficult. Recently, deep learning technology has been employed to detect and identify rice diseases and pests. This paper introduces common publicly available datasets; summarizes the applications on rice diseases and pests from the aspects of image recognition, object detection, image segmentation, attention mechanism, and few-shot learning methods according to More >

  • Open Access

    ARTICLE

    A Secure and Cost-Effective Training Framework Atop Serverless Computing for Object Detection in Blasting Sites

    Tianming Zhang1, Zebin Chen1, Haonan Guo2, Bojun Ren1, Quanmin Xie3,*, Mengke Tian4,*, Yong Wang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 2139-2154, 2024, DOI:10.32604/cmes.2023.043822 - 29 January 2024

    Abstract The data analysis of blasting sites has always been the research goal of relevant researchers. The rise of mobile blasting robots has aroused many researchers’ interest in machine learning methods for target detection in the field of blasting. Serverless Computing can provide a variety of computing services for people without hardware foundations and rich software development experience, which has aroused people’s interest in how to use it in the field of machine learning. In this paper, we design a distributed machine learning training application based on the AWS Lambda platform. Based on data parallelism, the More >

  • Open Access

    REVIEW

    Exploring Deep Learning Methods for Computer Vision Applications across Multiple Sectors: Challenges and Future Trends

    Narayanan Ganesh1, Rajendran Shankar2, Miroslav Mahdal3, Janakiraman Senthil Murugan4, Jasgurpreet Singh Chohan5, Kanak Kalita6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 103-141, 2024, DOI:10.32604/cmes.2023.028018 - 30 December 2023

    Abstract Computer vision (CV) was developed for computers and other systems to act or make recommendations based on visual inputs, such as digital photos, movies, and other media. Deep learning (DL) methods are more successful than other traditional machine learning (ML) methods in CV. DL techniques can produce state-of-the-art results for difficult CV problems like picture categorization, object detection, and face recognition. In this review, a structured discussion on the history, methods, and applications of DL methods to CV problems is presented. The sector-wise presentation of applications in this paper may be particularly useful for researchers More >

  • Open Access

    ARTICLE

    Learning Discriminatory Information for Object Detection on Urine Sediment Image

    Sixian Chan1,2, Binghui Wu1, Guodao Zhang3, Yuan Yao4, Hongqiang Wang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 411-428, 2024, DOI:10.32604/cmes.2023.029485 - 22 September 2023

    Abstract In clinical practice, the microscopic examination of urine sediment is considered an important in vitro examination with many broad applications. Measuring the amount of each type of urine sediment allows for screening, diagnosis and evaluation of kidney and urinary tract disease, providing insight into the specific type and severity. However, manual urine sediment examination is labor-intensive, time-consuming, and subjective. Traditional machine learning based object detection methods require hand-crafted features for localization and classification, which have poor generalization capabilities and are difficult to quickly and accurately detect the number of urine sediments. Deep learning based object detection… More > Graphic Abstract

    Learning Discriminatory Information for Object Detection on Urine Sediment Image

  • Open Access

    ARTICLE

    An Intelligent Detection Method for Optical Remote Sensing Images Based on Improved YOLOv7

    Chao Dong, Xiangkui Jiang*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3015-3036, 2023, DOI:10.32604/cmc.2023.044735 - 26 December 2023

    Abstract To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images, this paper proposes a multi-scale object detection model for remote sensing images on complex backgrounds, called DI-YOLO, based on You Only Look Once v7-tiny (YOLOv7-tiny). Firstly, to enhance the model’s ability to capture irregular-shaped objects and deformation features, as well as to extract high-level semantic information, deformable convolutions are used to replace standard convolutions in the original model. Secondly, a Content Coordination Attention Feature Pyramid Network (CCA-FPN) structure is designed to replace the… More >

  • Open Access

    ARTICLE

    Zero-DCE++ Inspired Object Detection in Less Illuminated Environment Using Improved YOLOv5

    Ananthakrishnan Balasundaram1,*, Anshuman Mohanty2, Ayesha Shaik1, Krishnadoss Pradeep2, Kedalu Poornachary Vijayakumar2, Muthu Subash Kavitha3

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2751-2769, 2023, DOI:10.32604/cmc.2023.044374 - 26 December 2023

    Abstract Automated object detection has received the most attention over the years. Use cases ranging from autonomous driving applications to military surveillance systems, require robust detection of objects in different illumination conditions. State-of-the-art object detectors tend to fare well in object detection during daytime conditions. However, their performance is severely hampered in night light conditions due to poor illumination. To address this challenge, the manuscript proposes an improved YOLOv5-based object detection framework for effective detection in unevenly illuminated nighttime conditions. Firstly, the preprocessing strategies involve using the Zero-DCE++ approach to enhance lowlight images. It is followed… More >

  • Open Access

    ARTICLE

    Multiple-Object Tracking Using Histogram Stamp Extraction in CCTV Environments

    Ye-Yeon Kang1, Geon Park1, Hyun Yoo2, Kyungyong Chung1,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3619-3635, 2023, DOI:10.32604/cmc.2023.043566 - 26 December 2023

    Abstract Object tracking, an important technology in the field of image processing and computer vision, is used to continuously track a specific object or person in an image. This technology may be effective in identifying the same person within one image, but it has limitations in handling multiple images owing to the difficulty in identifying whether the object appearing in other images is the same. When tracking the same object using two or more images, there must be a way to determine that objects existing in different images are the same object. Therefore, this paper attempts… More >

  • Open Access

    REVIEW

    Visual SLAM Based on Object Detection Network: A Review

    Jiansheng Peng1,2,*, Dunhua Chen1, Qing Yang1, Chengjun Yang2, Yong Xu2, Yong Qin2

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3209-3236, 2023, DOI:10.32604/cmc.2023.041898 - 26 December 2023

    Abstract Visual simultaneous localization and mapping (SLAM) is crucial in robotics and autonomous driving. However, traditional visual SLAM faces challenges in dynamic environments. To address this issue, researchers have proposed semantic SLAM, which combines object detection, semantic segmentation, instance segmentation, and visual SLAM. Despite the growing body of literature on semantic SLAM, there is currently a lack of comprehensive research on the integration of object detection and visual SLAM. Therefore, this study aims to gather information from multiple databases and review relevant literature using specific keywords. It focuses on visual SLAM based on object detection, covering… More >

  • Open Access

    ARTICLE

    Interactive Transformer for Small Object Detection

    Jian Wei, Qinzhao Wang*, Zixu Zhao

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1699-1717, 2023, DOI:10.32604/cmc.2023.044284 - 29 November 2023

    Abstract The detection of large-scale objects has achieved high accuracy, but due to the low peak signal to noise ratio (PSNR), fewer distinguishing features, and ease of being occluded by the surroundings, the detection of small objects, however, does not enjoy similar success. Endeavor to solve the problem, this paper proposes an attention mechanism based on cross-Key values. Based on the traditional transformer, this paper first improves the feature processing with the convolution module, effectively maintaining the local semantic context in the middle layer, and significantly reducing the number of parameters of the model. Then, to More >

Displaying 101-110 on page 11 of 209. Per Page