Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    Overexpression of RUNX1 mitigates dexamethasone-induced impairment of osteogenic differentiation and oxidative stress injury in bone marrow mesenchymal stem cells by promoting alpha-2 macroglobulin transcription

    QINGJIAN HE1, HUIXIN ZHU2,3, SHANHONG FANG4,5,*

    BIOCELL, Vol.48, No.2, pp. 205-216, 2024, DOI:10.32604/biocell.2023.045109

    Abstract Introduction: Dexamethasone (Dex) caused impaired osteoblast differentiation and oxidative stress (OS) in bone marrow mesenchymal stem cells (BMSCs). This work sought to elucidate the precise molecular pathway through which Dex influences osteogenic differentiation (OD) and OS in BMSCs. Methods: The expression of Runt-related transcription factor 1 (RUNX1) and alpha-2 macroglobulin (A2M) was assessed in Dex-treated BMSCs using qRT-PCR and Western Blot. Following the functional rescue experiments, cell proliferation was determined by MTT assay, reactive oxygen species (ROS) expression by DCFH-DA fluorescent probe, lactate dehydrogenase (LDH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (Gpx) expression by kits, OD by alkaline… More >

  • Open Access

    ARTICLE

    A novel mutation in ROR2 led to the loss of function of ROR2 and inhibited the osteogenic differentiation capability of bone marrow mesenchymal stem cells (BMSCs)

    WENQI CHEN1,#, XIAOYANG CHU2,#, YANG ZENG3,#, YOUSHENG YAN4, YIPENG WANG4, DONGLAN SUN1, DONGLIANG ZHANG5, JING ZHANG1,*, KAI YANG4,*

    BIOCELL, Vol.47, No.7, pp. 1561-1569, 2023, DOI:10.32604/biocell.2023.028851

    Abstract Background: Receptor tyrosine kinase-like orphan receptor 2 (ROR2) has a vital role in osteogenesis. However, the mechanism underlying the regulation of ROR2 in osteogenic differentiation is still poorly comprehended. A previous study by our research group showed that a novel compound heterozygous ROR2 variation accounted for the autosomal recessive Robinow syndrome (ARRS). This study attempted to explore the impact of the ROR2: c.904C>T variant specifically on the osteogenic differentiation of BMSCs. Methods: Coimmunoprecipitation (CoIP)-western blotting was carried out to identify the interaction between ROR2 and Wnt5a. Double-immunofluorescence staining was used for determining the expressions and co-localization of ROR2 and Wnt5a… More > Graphic Abstract

    A novel mutation in <i>ROR2</i> led to the loss of function of <i>ROR2</i> and inhibited the osteogenic differentiation capability of bone marrow mesenchymal stem cells (BMSCs)

  • Open Access

    ARTICLE

    miR-103-3p regulates the differentiation of bone marrow mesenchymal stem cells in myelodysplastic syndrome

    NINGYU LI1,2,#, XIAOFANG CHEN2,#,§, SUXIA GENG2, PEILONG LAI2, LISI HUANG2, MINMING LI2, XIN HUANG2, CHENGXIN DENG2, YULIAN WANG2, JIANYU WENG2, XIN DU1,2,*

    BIOCELL, Vol.47, No.1, pp. 133-141, 2023, DOI:10.32604/biocell.2022.022021

    Abstract The pathogenesis of myelodysplastic syndrome (MDS) may be related to the abnormal expression of microRNAs (miRNAs), which could influence the differentiation capacity of mesenchymal stem cells (MSCs) towards adipogenic and osteogenic lineages. In this study, exosomes from bone marrow plasma were successfully extracted and identified. Assessment of miR-103-3p expression in exosomes isolated from BM in 34 MDS patients and 10 controls revealed its 0.52-fold downregulation in patients with MDS compared with controls (NOR) and was downregulated 0.55-fold in MDS-MSCs compared with NOR-MSCs. Transfection of MDS-MSCs with the miR-103-3p mimic improved osteogenic differentiation and decreased adipogenic differentiation in vitro, while inhibition… More >

  • Open Access

    ARTICLE

    Wnt3a-induced ST2 decellularized matrix ornamented PCL scaffold for bone tissue engineering

    XIAOFANG WANG1, XIAOLIN TU1,2,*, YUFEI MA1, JIE CHEN1, YANG SONG3, GUANGLIANG LIU1

    BIOCELL, Vol.46, No.9, pp. 2089-2099, 2022, DOI:10.32604/biocell.2022.020069

    Abstract The limited bioactivity of scaffold materials is an important factor that restricts the development of bone tissue engineering. Wnt3a activates the classic Wnt/β-catenin signaling pathway which effects bone growth and development by the accumulation of β-catenin in the nucleus. In this study, we fabricated 3D printed PCL scaffold with Wnt3a-induced murine bone marrow-derived stromal cell line ST2 decellularized matrix (Wnt3a-ST2-dCM-PCL) and ST2 decellularized matrix (ST2-dCM-PCL) by freeze-thaw cycle and DNase decellularization treatment which efficiently decellularized >90% DNA while preserved most protein. Compared to ST2-dCM-PCL, Wnt3a-ST2-dCM-PCL significantly enhanced newly-seeded ST2 proliferation, osteogenic differentiation and upregulated osteogenic marker genes alkaline phosphatase (Alp),… More >

  • Open Access

    ARTICLE

    Cyclic biaxial tensile strain enhances osteogenic differentiation in rat bone marrow-derived mesenchymal stem cells via activating ERα-Wnt3a/β-catenin pathway

    MIN TANG1,#, XUELING HE1,2,#, XINGHONG YAO1, JIRUI WEN1, MINGYUE BAO1, LIANG LI1,*

    BIOCELL, Vol.46, No.6, pp. 1465-1472, 2022, DOI:10.32604/biocell.2022.018967

    Abstract The present study was designed to investigate the role of estrogen receptor α (ERα) in biaxial tensile strain (BTS) regulated osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (rBMSCs). rBMSCs were derived from rats and overexpressed ERα. The rBMSCs were subjected to BTS at 1 Hz with a strain of 2% for 4 h per day, 3 days, with or without ERα inhibitor ICI 182,780 (ICI). Then, bone mineralization was performed by Alizarin Red Staining. The markers of osteogenic differentiation and downstream Wnt3a/β-catenin signaling were detected by western blotting. Results showed that BTS enhanced the osteogenic differentiation of rBMSCs,… More >

  • Open Access

    ARTICLE

    Enhanced osteogenic differentiation of human periodontal ligament stem cells by suberoylanilide hydroxamic acid

    YUNZE XUAN1,#, BIN JIN1,#, SAYAN DEB DUTTA5,#, MENGMENG LIU2, ZAIXIAN SHEN1, XIWEN LIU3, YANG KANGJUAN4,*, LIM KI-TAEK5,*

    BIOCELL, Vol.44, No.3, pp. 389-400, 2020, DOI:10.32604/biocell.2020.09170

    Abstract Periodontitis is a type of chronic inflammation in the gingival tissue caused by infectious bacteria colonizing the surface of the teeth, leading to the destruction of tooth-supporting tissues and loss of alveolar bone. Suberoylanilide hydroxamic acid (SAHA), a class of histone deacetylase (HDAC) inhibitor, has the potential to stimulate osteoblast differentiation by acetylating histone proteins, and thus suppressing the expression of adipogenic and chondrogenic genes. However, the effect of SAHA on the differentiation of human periodontal ligament stem cells (hPDLSCs) is yet to be elucidated. Herein, we investigated the effects of SAHA on in vitro proliferation and differentiation of hPDLSCs… More >

  • Open Access

    ARTICLE

    Behavior of mesenchymal stem cells stained with 4’, 6-diamidino-2-phenylindole dihydrochloride (DAPI) in osteogenic and non osteogenic cultures

    N.M. OCARINO*, A. BOZZI**, R.D.O. PEREIRA*, N.M. BREYNER**, V.L. SILVA*, P. CASTANHEIRA**, A.M. GOES**, R. SERAKIDES*

    BIOCELL, Vol.32, No.2, pp. 175-183, 2008, DOI:10.32604/biocell.2008.32.175

    Abstract 4’, 6-diamidino-2-phenylindole dihydrochloride (DAPI) is a DNA dye widely used to mark and trace stem cells in therapy. We here studied the effect of DAPI staining on the behavior of mesenchymal stem cells cultured in either a control, non-osteogenic medium or in an osteogenic differentiation medium. In the control medium, the number of stem cells/field, as well as the number of fluorescent cells/field increased up to the sixth day in both control and DAPI-treated cultures. Afterwards, both the number of fluorescent cells and their fluorescence intensity decreased. Control cells were fusiform and with some long extensions that apparently linked them… More >

  • Open Access

    ABSTRACT

    The Rate of Fluid Shear Stress is a Potent Regulator for Lineage Commitment of Mesenchymal Stem Cells Through Modulating [Ca2+]i, F-actin and Lamin A

    Danyang Yue1, Yijuan Fan1, Juan Lu1, Mengxue Zhang1, Jin Zhou1, Yuying Bai1, Jun Pan1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 144-144, 2019, DOI:10.32604/mcb.2019.07084

    Abstract Mesenchymal Stem Cells (MSCs) are recruited to the musculoskeletal system following trauma [1] or chemicals stimulation [2]. The regulation of their differentiation into either bone or cartilage cells is a key question. The fluid shear stress (FSS) is of pivotal importance to the development, function and even the repair of all tissues in the musculoskeletal system [3]. We previously found that MSCs are sensitive enough to distinguish a slight change of FSS stimulation during their differentiation commitment to bone or cartilage cells, and the internal mechanisms. In detail, MSCs were exposed to laminar FSS linearly increased from 0 to 10… More >

  • Open Access

    ABSTRACT

    Macrophages as A Mechano-Transducer to Direct the Osteogenic Differentiation of Mesenchymal Stem Cells

    Lili Dong1, Yang Song1,*, Li Yang1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 78-78, 2019, DOI:10.32604/mcb.2019.07130

    Abstract It has been widely recognized that stem cells possess the potential of osteogenic differentiation, which greatly contribute to bone repair. Recently, accumulating evidences have indicated that mechanical cues are required for bone repair [1,2]. However, how local and recruited stem cells in the bone architecture receive the mechanical signals is poorly understood [3,4]. The purpose of this study is to demonstrate that macrophages potentially transduce the mechanical signals for stem cell osteogenic lineage. This demonstration has been carried out through a co-culture system to investigate the effect of macrophages which subjected to cyclic stretch on the osteogenic potential of bone… More >

  • Open Access

    ARTICLE

    Altered Cellular Mechanics during Osteogenic Differentiation of Human Mesenchymal Stem Cells

    I. A. Titushkin1, M. Cho1

    Molecular & Cellular Biomechanics, Vol.3, No.4, pp. 151-151, 2006, DOI:10.32604/mcb.2006.003.151

    Abstract This article has no abstract. More >

Displaying 1-10 on page 1 of 12. Per Page