Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (20,686)
  • Open Access

    ARTICLE

    Effects of TGO Roughness on Indentation Response of Thermal Barrier Coatings

    Taotao Hu1, gping Shen1,2

    CMC-Computers, Materials & Continua, Vol.17, No.1, pp. 41-58, 2010, DOI:10.3970/cmc.2010.017.041

    Abstract In this paper, an axisymmetric indentation model is set up to calculate the effects of the roughness of the thermally grown oxide (TGO) layer, which was modeled as a sinusoidal wave, on the indentation response of the thermal barrier coatings. It is found that the amplitude, wavelength, and thickness of the thermally grown oxide layer have obvious influences on the indentation response, while the effect of the indenter position can be neglected. In the top coating layer, residual stress mainly occurs below the indenter and around the nearest two peaks of the thermally grown oxide layer to the indenter. Only… More >

  • Open Access

    ARTICLE

    A Quasi-Boundary Semi-Analytical Approach for Two-Dimensional Backward Advection-Dispersion Equation

    Chih-Wen Chang1, Chein-Shan Liu2

    CMC-Computers, Materials & Continua, Vol.17, No.1, pp. 19-40, 2010, DOI:10.3970/cmc.2010.017.019

    Abstract In this study, we employ a semi-analytical approach to solve a two-dimensional advection-dispersion equation (ADE) for identifying the contamination problems. First, the Fourier series expansion technique is used to calculate the concentration field C(x, y, t) at any time t < T. Then, we ponder a direct regularization by adding an extra termaC(x, y, 0) on the final time data C(x, y, T), to reach a second-kind Fredholm integral equation. The termwise separable property of kernel function allows us obtaining a closed-form solution of the Fourier coefficients. A strategy to choose the regularization parameter is offered. The solver utilized in… More >

  • Open Access

    ARTICLE

    Topology of Homophase Grain Boundaries in Two-Dimensional Crystals: The Role of Grain Exchange Symmetry

    S. Patala1, C.A. Schuh1

    CMC-Computers, Materials & Continua, Vol.17, No.1, pp. 1-18, 2010, DOI:10.3970/cmc.2010.017.001

    Abstract Recent advances in microstructural characterization have made it possible to measure grain boundaries and their networks in full crystallographic detail. Statistical studies of the complete boundary space using full crystallographic parameters (misorientations and boundary plane inclinations) are limited because the topology of the parameter space is not understood (especially for homophase grain boundaries). This paper addresses some of the complexities associated with the group space of grain boundaries, and resolves the topology of the complete boundary space for systems of two-dimensional crystals. Although the space of homophase boundaries is complicated by the existence of a `no-boundary' singularity, i.e., no boundary… More >

  • Open Access

    ARTICLE

    Thermo-Elastic Localization Relationships for Multi-Phase Composites

    Giacomo Landi1, Surya R. Kalidindi2

    CMC-Computers, Materials & Continua, Vol.16, No.3, pp. 273-294, 2010, DOI:10.3970/cmc.2010.016.273

    Abstract In this paper, we present a computationally efficient multi-scale framework for predicting the local fields in the representative volume element of a multiphase material system subjected to thermo-mechanical loading conditions. This framework for localization relationships is a natural extension of our recent work on two-phase composites subjected to purely mechanical loading. In this novel approach, the localization relationships take on a simple structure expressed as a series sum, where each term in the series is a convolution product of local structure and the governing physics expressed in the form of influence coefficients. Another salient feature of this approach is its… More >

  • Open Access

    ARTICLE

    Three Dimensional Nanoscale Abrasive Cutting Simulation and Analysis for Single-Crystal Silicon Workpiece

    Zone-Ching Lin1and Ren-Yuan Wang1

    CMC-Computers, Materials & Continua, Vol.16, No.3, pp. 247-272, 2010, DOI:10.3970/cmc.2010.016.247

    Abstract The paper establishes a new three-dimensional quasi-steady molecular statics nanoscale abrasive cutting model to investigate the abrasive cutting behavior in the downpressing and abrasive cutting process of a workpiece in chemical mechanical polishing (CMP) process. The downpressing and abrasive cutting process is a continuous process. The abrasive cutting process is done after the single abrasive particle has downpressed and penetrated a workpiece to a certain depth of a workpiece. The paper analyzes the effects of the abrasive particles with different diameters on action force. It also analyzes the action force change of abrasive particles with different diameters on the projected… More >

  • Open Access

    ARTICLE

    Interface Effect on the Dynamic Stress around an Elliptical Nano-Inhomogeneity Subjected to Anti-Plane Shear Waves

    Xue-Qian Fang1,2, Xiao-Hua Wang1, Le-Le Zhang3

    CMC-Computers, Materials & Continua, Vol.16, No.3, pp. 229-246, 2010, DOI:10.3970/cmc.2010.016.229

    Abstract In the design of advanced micro- and nanosized materials and devices containing inclusions, the effects of surfaces/interfaces on the stress concentration become prominent. In this paper, based on the surface/interface elasticity theory, a two-dimensional problem of an elliptical nano-inhomogeneity under anti-plane shear waves is considered. The conformal mapping method is then applied to solve the formulated boundary value problem. The analytical solutions of displacement fields are expressed by employing wave function expansion method, the expanded mode coefficients are determined by satisfying the boundary conditions at the interfaces of the nano-inhomogeneity. Analyses show that the effect of the interfacial properties on… More >

  • Open Access

    ARTICLE

    Numerical and Experimental Analysis of Welding Deformation in Thin Plates

    M.R. Khoshravan1 and M.A. Setoodeh1

    CMC-Computers, Materials & Continua, Vol.16, No.3, pp. 195-228, 2010, DOI:10.3970/cmc.2010.016.195

    Abstract The use of welding to permanently join plates is common in industry due to its high efficiency. But welding creates thermal stresses, which can lead to residual stresses and physical distortion. This phenomenon directly influences the buckling stiffness of the welded structure. The welding distortion not only makes difficult the erection of the project, but also influences the final quality and cost of production. In this research, the thermo-elastic-plastic conditions were simulated by a three-dimensional (3D) finite element model (FE). Mechanical and thermal properties of the material were applied to the model, leading to eigenvalue analysis of the thermal and… More >

  • Open Access

    ARTICLE

    Lattice Dynamics and Second and Third Order Elastic Constants of Iron at Elevated Pressures

    Hieu H. Pham1, Tahir Ça ˇgın1

    CMC-Computers, Materials & Continua, Vol.16, No.2, pp. 175-194, 2010, DOI:10.3970/cmc.2010.016.175

    Abstract We analyze the lattice dynamics of Fe in different crystal phases (bcc, fcc and hcp) by using density-functional theory. The study on equations of states indicates that bcc Fe is more stable than fcc and hcp Fe at low pressures. However, dynamical instabilities in lattice vibrations of bcc Fe predict a phase transformation from bcc to hcp at higher pressures. We reported a complete set of second-order and third-order elastic constants of Fe in these three phases. We observed a linear variation in the values of second order elastic constant as a function of increased pressures. The phonon spectra were… More >

  • Open Access

    ARTICLE

    The Effective Material Properties of a Steel Plate Containing Corrosion Pits

    W. F. Yuan1,2, H. B. Zhang1

    CMC-Computers, Materials & Continua, Vol.16, No.2, pp. 117-126, 2010, DOI:10.3970/cmc.2010.016.117

    Abstract Corrosion pits on a steel plate can reduce the strength of the plate. However, it is difficult to calculate the corrosion effect analytically since the pits are normally distributed on the plate's surface randomly. In this manuscript, a simple approach is proposed to convert the corroded plate into a perfect one. By this method, the corrosion pits are treated as inclusions embedded in the plate. Then the analytical mechanics model used for composite material can be adopted in the calculation of the steel plate's effective material properties. To verify the proposed approach, numerical simulation is conducted using finite element method. More >

  • Open Access

    ARTICLE

    Evaluation of the Toupin-Mindlin Theory for Predicting the Size Effects in the Buckling of the Carbon Nanotubes

    Veturia Chiroiu1, Ligia Munteanu1, Pier Paolo Delsanto2

    CMC-Computers, Materials & Continua, Vol.16, No.1, pp. 75-100, 2010, DOI:10.3970/cmc.2010.016.075

    Abstract Conventional continuum theories are unable to capture the observed indentation size effects, due to the lack of intrinsic length scales that represent the measures of nanostructure in the constitutive relations. In order to overcome this deficiency, the Toupin-Mindlin strain gradient theory of nanoindentation is formulated in this paper and the size dependence of the hardness with respect to the depth and the radius of the indenter for multiple walled carbon nanotubes is investigated. Results show a peculiar size influence on the hardness, which is explained via the shear resistance between the neighboring walls during the buckling of the multiwalled nanotubes. More >

Displaying 20581-20590 on page 2059 of 20686. Per Page