Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6,022)
  • Open Access

    ARTICLE

    Numerical Study of PVB Laminated Windshield Cracking Upon Human Head Impact

    Jun Xu1,2, Yibing Li1, Xi Chen2,3, Yuan Yan2,3, Dongyun Ge4,1, Bohan Liu1

    CMC-Computers, Materials & Continua, Vol.18, No.2, pp. 183-212, 2010, DOI:10.3970/cmc.2010.018.183

    Abstract The crack pattern in a PVB laminated windshield upon head impact is of considerable interest because it contains important information on energy mitigation, pedestrian protection, and accident reconstruction. We carry out a systematic numerical study based on the extended finite element method (XFEM), to investigate the effects of various material and system variables, including the impact speed, effective head mass, PVB interlayer material thickness and property, windshield curvature, aspect ratio and size, boundary constraint, impact angle and off-center impact, on the parameters characterizing the resulting crack pattern, i.e. the crack length, crack angle and circumferential crack shape. General relations bridging… More >

  • Open Access

    ARTICLE

    Simulation of Dendritic Growth with Different Orientation by Using the Point Automata Method

    A.Z. Lorbiecka1, B. Šarler1,2

    CMC-Computers, Materials & Continua, Vol.18, No.1, pp. 69-104, 2010, DOI:10.3970/cmc.2010.018.069

    Abstract The aim of this paper is simulation of thermally induced liquid-solid dendritic growth in two dimensions by a coupled deterministic continuum mechanics heat transfer model and a stochastic localized phase change kinetics model that takes into account the undercooling, curvature, kinetic and thermodynamic anisotropy. The stochastic model receives temperature information from the deterministic model and the deterministic model receives the solid fraction information from the stochastic model. The heat transfer model is solved on a regular grid by the standard explicit Finite Difference Method (FDM). The phase-change kinetics model is solved by the classical Cellular Automata (CA) approach and a… More >

  • Open Access

    ARTICLE

    A Lie-Group Adaptive Method for Imaging a Space-Dependent Rigidity Coefficient in an Inverse Scattering Problem of Wave Propagation

    Chein-Shan Liu1

    CMC-Computers, Materials & Continua, Vol.18, No.1, pp. 1-20, 2010, DOI:10.3970/cmc.2010.018.001

    Abstract We are concerned with the reconstruction of an unknown space-dependent rigidity coefficient in a wave equation. This problem is known as one of the inverse scattering problems. Based on a two-point Lie-group equation we develop a Lie-group adaptive method (LGAM) to solve this inverse scattering problem through iterations, which possesses a special character that by using onlytwo boundary conditions and two initial conditions, as those used in the direct problem, we can effectively reconstruct the unknown rigidity function by aself-adaption between the local in time differential governing equation and the global in time algebraic Lie-group equation. The accuracy and efficiency… More >

  • Open Access

    ARTICLE

    Model of Random Spatial Packing of Rigid Spheres with Controlled Macroscopic Homogenity

    J. Zidek1 , J. Kucera1, J. Jancar1

    CMC-Computers, Materials & Continua, Vol.16, No.1, pp. 51-74, 2010, DOI:10.3970/cmc.2010.016.051

    Abstract It has been shown that in particulate filled composites, a cross-property relationship exists between various transport properties (e.g., electrical conductivity, mechanical reinforcement, gas permeation) of a macroscale composite. Thus, knowledge of the effective mechanical properties of a composite immediately places bounds on its electrical conductivity or gas permeation behavior. Using these bounds allows us to predict the phase dispersion state that optimizes one or multiple properties of the composite and, thus, the knowledge of how spatial arrangement of filler particles at their given content affects physical properties of the composite can be valuable. In this paper, a new numerical model… More >

  • Open Access

    ARTICLE

    Molecular Dynamics Study of Dynamic Responses of Glassy Silica under Shock Impact

    Luming Shen1

    CMC-Computers, Materials & Continua, Vol.15, No.3, pp. 241-260, 2010, DOI:10.3970/cmc.2010.015.241

    Abstract In this study, molecular dynamics (MD) simulations are performed to form glassy silica from meltedb-cristobalite using cooling rates of 2, 20 and 200 K/ps. The resulting glassy silica samples are then shocked at particle velocities ranging from 0.3 to 11 km/s in the MD simulations. The effect of the cooling rate on the shock wave velocity is observed for particle velocities below 2 km/s. Moreover, the simulated pressure and density of the shocked glassy silica increase as the cooling rate increases. As compared with the experimental data, the MD simulation can approximately identify the initiation of densification and predict the… More >

  • Open Access

    ARTICLE

    The Fictitious Time Integration Method to Solve the Space- and Time-Fractional Burgers Equations

    Chein-Shan Liu1

    CMC-Computers, Materials & Continua, Vol.15, No.3, pp. 221-240, 2010, DOI:10.3970/cmc.2010.015.221

    Abstract We propose a simple numerical scheme for solving the space- and time-fractional derivative Burgers equations: Dtαu + εuux = vuxx + ηDxβu, 0 < α, β ≤ 1, and ut + D*β(D*1-βu)2/2 = vuxx, 0 < β ≤ 1. The time-fractional derivative Dtαu and space-fractional derivative Dxβu are defined in the Caputo sense, while D*βu is the Riemann-Liouville space-fractional derivative. A fictitious time τ is used to transform the dependent variable u(x,t) into a new one by (1+τ)γu(x,t) =: v(x,t,τ), where 0 < γ ≤ 1 is a parameter, such that the original equation is written as a new functional-differential… More >

  • Open Access

    ARTICLE

    Space-Time Adaptive Fup Multi-Resolution Approach for Boundary-Initial Value Problems

    Hrvoje Gotovac1, Vedrana Kozulić2, Blaž Gotovac1

    CMC-Computers, Materials & Continua, Vol.15, No.3, pp. 173-198, 2010, DOI:10.3970/cmc.2010.015.173

    Abstract The space-time Adaptive Fup Collocation Method (AFCM) for solving boundary-initial value problems is presented. To solve the one-dimensional initial boundary value problem, we convert the problem into a two-dimensional boundary value problem. This quasi-boundary value problem is then solved simultaneously in the space-time domain with a collocation technique and by using atomic Fup basis functions. The proposed method is a generally meshless methodology because it requires only the addition of collocation points and basis functions over the domain, instead of the classical domain discretization and numerical integration. The grid is adapted progressively by setting the threshold as a direct measure… More >

  • Open Access

    ARTICLE

    Measurements of the Curvature of Protrusions/Retrusions on Migrating Recrystallization Boundaries

    Y.B. Zhang1, A. Godfrey2, D. Juul Jensen1

    CMC-Computers, Materials & Continua, Vol.14, No.3, pp. 197-208, 2009, DOI:10.3970/cmc.2009.014.197

    Abstract Two methods to quantify protrusions/retrusions and to estimate local boundary curvature from sample plane sections are proposed. The methods are used to evaluate the driving force due to curvature of the protrusions/retrusions for partially recrystallized pure nickel cold rolled to 96% reduction in thickness. The results reveal that the values calculated by both these methods are reasonable when compared with the stored energy measured by differential scanning calorimetry. The relationship between protrusions and the average stored energy density in the deformed matrix is also investigated for partially recrystallized pure aluminum cold rolled to 50%. The results show that the local… More >

  • Open Access

    ARTICLE

    Identification of Particle Stimulated Nucleation during Recrystallization of AA 7050

    D.P. Field1, L. Behrens2, J.M. Root1

    CMC-Computers, Materials & Continua, Vol.14, No.3, pp. 171-184, 2009, DOI:10.3970/cmc.2009.014.171

    Abstract Mechanical properties of polycrystalline metals are dependent upon the arrangement of microstructural features in the metal. Recrystallization is an important phenomenon that often occurs during thermo-mechanical processing of metals. This work focuses upon aluminum alloy 7050 and uses crystallographic texture and pair correlation functions of recrystallized grains to characterize the dominance of particle stimulated nucleation in the recrystallization process. The randomization of the recrystallization texture and similar pair correlation functions for the particle distribution and the recrystallization nuclei distribution indicate that particle stimulated nucleation controls the recrystallization behavior in this alloy. More >

  • Open Access

    ARTICLE

    Modeling Intergranular Crack Propagation in Polycrystalline Materials

    M.A.Arafin1, J.A.Szpunar2

    CMC-Computers, Materials & Continua, Vol.14, No.2, pp. 125-140, 2009, DOI:10.3970/cmc.2009.014.125

    Abstract A novel microstructure, texture and grain boundary character based model has been proposed to simulate the intergranular crack propagation behavior in textured polycrystalline materials. The model utilizes the Voronoi algorithm and Monte Carlo simulations to construct the microstructure with desired grain shape factor, takes the texture description of the materials to assign the orientations of the grains, evaluates the grain boundary character based on the misorientation angle - axis calculated from the orientations of the neighboring grains, and takes into account the inclination of grain boundaries with respect to the external stress direction. Markov Chain theory has been applied to… More >

Displaying 5991-6000 on page 600 of 6022. Per Page