Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (35)
  • Open Access

    ARTICLE

    Novel Algorithm for Mobile Robot Path Planning in Constrained Environment

    Aisha Muhammad1,5, Mohammed A. H. Ali2,*, Sherzod Turaev3, Ibrahim Haruna Shanono4,5, Fadhl Hujainah6, Mohd Nashrul Mohd Zubir2, Muhammad Khairi Faiz2, Erma Rahayu Mohd Faizal1, Rawad Abdulghafor8

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2697-2719, 2022, DOI:10.32604/cmc.2022.020873

    Abstract This paper presents a development of a novel path planning algorithm, called Generalized Laser simulator (GLS), for solving the mobile robot path planning problem in a two-dimensional map with the presence of constraints. This approach gives the possibility to find the path for a wheel mobile robot considering some constraints during the robot movement in both known and unknown environments. The feasible path is determined between the start and goal positions by generating wave of points in all direction towards the goal point with adhering to constraints. In simulation, the proposed method has been tested in several working environments with… More >

  • Open Access

    ARTICLE

    Vision-Aided Path Planning Using Low-Cost Gene Encoding for a Mobile Robot

    Wei-Cheng Wang, Chow-Yong Ng, Rongshun Chen*

    Intelligent Automation & Soft Computing, Vol.32, No.2, pp. 991-1006, 2022, DOI:10.32604/iasc.2022.022067

    Abstract Path planning is intrinsically regarded as a multi-objective optimization problem (MOOP) that simultaneously optimizes the shortest path and the least collision-free distance to obstacles. This work develops a novel optimized approach using the genetic algorithm (GA) to drive the multi-objective evolutionary algorithm (MOEA) for the path planning of a mobile robot in a given finite environment. To represent the positions of a mobile robot as integer-type genes in a chromosome of the GA, a grid-based method is also introduced to relax the complex environment to a simple grid-based map. The system architecture is composed of a mobile robot, embedded with… More >

  • Open Access

    ARTICLE

    Optimal Path Planning for Intelligent UAVs Using Graph Convolution Networks

    Akshya Jothi, P. L. K. Priyadarsini*

    Intelligent Automation & Soft Computing, Vol.31, No.3, pp. 1577-1591, 2022, DOI:10.32604/iasc.2022.020974

    Abstract Unmanned Aerial Vehicles (UAVs) are in use for surveillance services in the geographic areas, that are very hard and sometimes not reachable by humans. Nowadays, UAVs are being used as substitutions to manned operations in various applications. The intensive utilization of autonomous UAVs has given rise to many new challenges. One of the vital problems that arise while deploying UAVs in surveillance applications is the Coverage Path Planning(CPP) problem. Given a geographic area, the problem is to find an optimal path/tour for the UAV such that it covers the entire area of interest with minimal tour length. A graph can… More >

  • Open Access

    ARTICLE

    Path Planning of Quadrotors in a Dynamic Environment Using a Multicriteria Multi-Verse Optimizer

    Raja Jarray1, Mujahed Al-Dhaifallah2,*, Hegazy Rezk3,4, Soufiene Bouallègue1,5

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2159-2180, 2021, DOI:10.32604/cmc.2021.018752

    Abstract Paths planning of Unmanned Aerial Vehicles (UAVs) in a dynamic environment is considered a challenging task in autonomous flight control design. In this work, an efficient method based on a Multi-Objective Multi-Verse Optimization (MOMVO) algorithm is proposed and successfully applied to solve the path planning problem of quadrotors with moving obstacles. Such a path planning task is formulated as a multicriteria optimization problem under operational constraints. The proposed MOMVO-based planning approach aims to lead the drone to traverse the shortest path from the starting point and the target without collision with moving obstacles. The vehicle moves to the next position… More >

  • Open Access

    ARTICLE

    An Improved Q-RRT* Algorithm Based on Virtual Light

    Chengchen Zhuge1,2,3,*, Qun Wang1,2,3, Jiayin Liu1,2,3, Lingxiang Yao4

    Computer Systems Science and Engineering, Vol.39, No.1, pp. 107-119, 2021, DOI:10.32604/csse.2021.016273

    Abstract The Rapidly-exploring Random Tree (RRT) algorithm is an efficient path-planning algorithm based on random sampling. The RRT* algorithm is a variant of the RRT algorithm that can achieve convergence to the optimal solution. However, it has been proven to take an infinite time to do so. An improved Quick-RRT* (Q-RRT*) algorithm based on a virtual light source is proposed in this paper to overcome this problem. The virtual light-based Q-RRT* (LQ-RRT*) takes advantage of the heuristic information generated by the virtual light on the map. In this way, the tree can find the initial solution quickly. Next, the LQ-RRT* algorithm… More >

  • Open Access

    ARTICLE

    AUV Global Security Path Planning Based on a Potential Field Bio-Inspired Neural Network in Underwater Environment

    Xiang Cao1,2,*, Ling Chen1, Liqiang Guo3, Wei Han4

    Intelligent Automation & Soft Computing, Vol.27, No.2, pp. 391-407, 2021, DOI:10.32604/iasc.2021.01002

    Abstract As one of the classical problems in autonomous underwater vehicle (AUV) research, path planning has obtained a lot of research results. Many studies have focused on planning an optimal path for AUVs. These optimal paths are sometimes too close to obstacles. In the real environment, it is difficult for AUVs to avoid obstacles according to such an optimal path. To solve the safety problem of AUV path planning in a dynamic uncertain environment, an algorithm combining a bio-inspired neural network and potential field is proposed. Based on the environmental information, the bio-inspired neural network plans the optimal path for the… More >

  • Open Access

    ARTICLE

    A Study of Unmanned Path Planning Based on a Double-Twin RBM-BP Deep Neural Network

    Xuan Chen1,*, Zhiping Wan1, Jiatong Wang2

    Intelligent Automation & Soft Computing, Vol.26, No.6, pp. 1531-1548, 2020, DOI:10.32604/iasc.2020.011723

    Abstract Addressing the shortcomings of unmanned path planning, such as significant error and low precision, a path-planning algorithm based on the whale optimization algorithm (WOA)-optimized double-blinking restricted Boltzmann machine-back propagation (RBM-BP) deep neural network model is proposed. The model consists mainly of two twin RBMs and one BP neural network. One twin RBM is used for feature extraction of the unmanned path location, and the other RBM is used for the path similarity calculation. The model uses the WOA algorithm to optimize parameters, which reduces the number of training sessions, shortens the training time, and reduces the training errors of the… More >

  • Open Access

    ARTICLE

    Design and Development of Unmanned Surface Vehicle for Meteorological Monitoring

    Dongli Wu1, Yunping Liu2,3,*, Ze Xu2,3, Weiyan Shang4

    Intelligent Automation & Soft Computing, Vol.26, No.5, pp. 1123-1138, 2020, DOI:10.32604/iasc.2020.012757

    Abstract In view of the paucity of hydrometeorological data, inefficiency and high cost of manual detection, a design scheme of meteorological monitoring unmanned surface vehicle (USV) based on STM32 MCU (Microcontroller Unit, which is also known as Single Chip Microcomputer) is proposed in this paper. The path planning is designed by combining the image data acquired by camera with improved RRT-path algorithm (rapidly-exploring random tree algorithm based on auxiliary path), and then motors are controlled so as to realize autonomous cruise control of USV using the incremental PID algorithm. In addition, the design can also realize real-time monitoring of meteorological data… More >

  • Open Access

    ARTICLE

    The Construction and Path Analysis of the School-Enterprise Cooperative Innovation Model under the Background of the Open Independent Innovation

    Xiaoyan Wang*, Shui Jing

    Intelligent Automation & Soft Computing, Vol.26, No.4, pp. 765-771, 2020, DOI:10.32604/iasc.2020.010111

    Abstract The organic combination of the independent innovation and open innovation opens a new pattern of innovation. Under the background of the open independent innovation, the cooperative innovation model of the school and enterprise is established, and an optimal development path model of the cooperative innovation of the school and enterprise based on the fuzzy decision control algorithm is proposed. Based on the rough set theory, a path search model of the cooperative innovation between a school and enterprise is established under the background of the open independent innovation. Under the background of the open independent innovation, the fuzzy decision-making method… More >

  • Open Access

    ARTICLE

    Online AUV Path Replanning Using Quantum-Behaved Particle Swarm Optimization with Selective Differential Evolution

    Hui Sheng Lim1,*, Christopher K. H. Chin1, Shuhong Chai1, Neil Bose1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 33-50, 2020, DOI:10.32604/cmes.2020.011648

    Abstract This paper presents an online AUV (autonomous underwater vehicle) path planner that employs path replanning approach and the SDEQPSO (selective differential evolution-hybridized quantum-behaved particle swarm optimization) algorithm to optimize an AUV mission conducted in an unknown, dynamic and cluttered ocean environment. The proposed path replanner considered the effect of ocean currents in path optimization to generate a Pareto-optimal path that guides the AUV to its target within minimum time. The optimization was based on the onboard sensor data measured from the environment, which consists of a priori unknown dynamic obstacles and spatiotemporal currents. Different sensor arrangements for the forward-looking sonar… More >

Displaying 21-30 on page 3 of 35. Per Page