Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (49)
  • Open Access

    ARTICLE

    A Path Planning Algorithm Based on Improved RRT Sampling Region

    Xiangkui Jiang*, Zihao Wang, Chao Dong

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4303-4323, 2024, DOI:10.32604/cmc.2024.054640 - 12 September 2024

    Abstract

    For the problem of slow search and tortuous paths in the Rapidly Exploring Random Tree (RRT) algorithm, a feedback-biased sampling RRT, called FS-RRT, is proposed based on RRT. Firstly, to improve the sampling efficiency of RRT to shorten the search time, the search area of the random tree is restricted to improve the sampling efficiency. Secondly, to obtain better information about obstacles to shorten the path length, a feedback-biased sampling strategy is used instead of the traditional random sampling, the collision of the expanding node with an obstacle generates feedback information so that the next

    More >

  • Open Access

    ARTICLE

    An Improved Iterated Greedy Algorithm for Solving Rescue Robot Path Planning Problem with Limited Survival Time

    Xiaoqing Wang1, Peng Duan1,*, Leilei Meng1,*, Kaidong Yang2

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 931-947, 2024, DOI:10.32604/cmc.2024.050612 - 18 July 2024

    Abstract Effective path planning is crucial for mobile robots to quickly reach rescue destination and complete rescue tasks in a post-disaster scenario. In this study, we investigated the post-disaster rescue path planning problem and modeled this problem as a variant of the travel salesman problem (TSP) with life-strength constraints. To address this problem, we proposed an improved iterated greedy (IIG) algorithm. First, a push-forward insertion heuristic (PFIH) strategy was employed to generate a high-quality initial solution. Second, a greedy-based insertion strategy was designed and used in the destruction-construction stage to increase the algorithm’s exploration ability. Furthermore,… More >

  • Open Access

    ARTICLE

    A Multi-Strategy-Improved Northern Goshawk Optimization Algorithm for Global Optimization and Engineering Design

    Liang Zeng1,2, Mai Hu1, Chenning Zhang1, Quan Yuan1, Shanshan Wang1,2,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1677-1709, 2024, DOI:10.32604/cmc.2024.049717 - 18 July 2024

    Abstract Optimization algorithms play a pivotal role in enhancing the performance and efficiency of systems across various scientific and engineering disciplines. To enhance the performance and alleviate the limitations of the Northern Goshawk Optimization (NGO) algorithm, particularly its tendency towards premature convergence and entrapment in local optima during function optimization processes, this study introduces an advanced Improved Northern Goshawk Optimization (INGO) algorithm. This algorithm incorporates a multifaceted enhancement strategy to boost operational efficiency. Initially, a tent chaotic map is employed in the initialization phase to generate a diverse initial population, providing high-quality feasible solutions. Subsequently, after… More >

  • Open Access

    ARTICLE

    Efficient Penetration Testing Path Planning Based on Reinforcement Learning with Episodic Memory

    Ziqiao Zhou1, Tianyang Zhou1,*, Jinghao Xu2, Junhu Zhu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2613-2634, 2024, DOI:10.32604/cmes.2023.028553 - 08 July 2024

    Abstract Intelligent penetration testing is of great significance for the improvement of the security of information systems, and the critical issue is the planning of penetration test paths. In view of the difficulty for attackers to obtain complete network information in realistic network scenarios, Reinforcement Learning (RL) is a promising solution to discover the optimal penetration path under incomplete information about the target network. Existing RL-based methods are challenged by the sizeable discrete action space, which leads to difficulties in the convergence. Moreover, most methods still rely on experts’ knowledge. To address these issues, this paper… More >

  • Open Access

    ARTICLE

    Path Planning for AUVs Based on Improved APF-AC Algorithm

    Guojun Chen*, Danguo Cheng, Wei Chen, Xue Yang, Tiezheng Guo

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3721-3741, 2024, DOI:10.32604/cmc.2024.047325 - 26 March 2024

    Abstract With the increase in ocean exploration activities and underwater development, the autonomous underwater vehicle (AUV) has been widely used as a type of underwater automation equipment in the detection of underwater environments. However, nowadays AUVs generally have drawbacks such as weak endurance, low intelligence, and poor detection ability. The research and implementation of path-planning methods are the premise of AUVs to achieve actual tasks. To improve the underwater operation ability of the AUV, this paper studies the typical problems of path-planning for the ant colony algorithm and the artificial potential field algorithm. In response to… More >

  • Open Access

    ARTICLE

    An Improved Bounded Conflict-Based Search for Multi-AGV Pathfinding in Automated Container Terminals

    Xinci Zhou, Jin Zhu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2705-2727, 2024, DOI:10.32604/cmes.2024.046363 - 11 March 2024

    Abstract As the number of automated guided vehicles (AGVs) within automated container terminals (ACT) continues to rise, conflicts have become more frequent. Addressing point and edge conflicts of AGVs, a multi-AGV conflict-free path planning model has been formulated to minimize the total path length of AGVs between shore bridges and yards. For larger terminal maps and complex environments, the grid method is employed to model AGVs’ road networks. An improved bounded conflict-based search (IBCBS) algorithm tailored to ACT is proposed, leveraging the binary tree principle to resolve conflicts and employing focal search to expand the search More >

  • Open Access

    ARTICLE

    A Reverse Path Planning Approach for Enhanced Performance of Multi-Degree-of-Freedom Industrial Manipulators

    Zhiwei Lin1, Hui Wang1,*, Tianding Chen1, Yingtao Jiang2, Jianmei Jiang3, Yingpin Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1357-1379, 2024, DOI:10.32604/cmes.2023.045990 - 29 January 2024

    Abstract In the domain of autonomous industrial manipulators, precise positioning and appropriate posture selection in path planning are pivotal for tasks involving obstacle avoidance, such as handling, heat sealing, and stacking. While Multi-Degree-of-Freedom (MDOF) manipulators offer kinematic redundancy, aiding in the derivation of optimal inverse kinematic solutions to meet position and posture requisites, their path planning entails intricate multi-objective optimization, encompassing path, posture, and joint motion optimization. Achieving satisfactory results in practical scenarios remains challenging. In response, this study introduces a novel Reverse Path Planning (RPP) methodology tailored for industrial manipulators. The approach commences by conceptualizing… More > Graphic Abstract

    A Reverse Path Planning Approach for Enhanced Performance of Multi-Degree-of-Freedom Industrial Manipulators

  • Open Access

    ARTICLE

    Research on Evacuation Path Planning Based on Improved Sparrow Search Algorithm

    Xiaoge Wei1,2,*, Yuming Zhang1,2, Huaitao Song1,2, Hengjie Qin1,2, Guanjun Zhao3

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1295-1316, 2024, DOI:10.32604/cmes.2023.045096 - 29 January 2024

    Abstract Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years. As part of this effort, an enhanced sparrow search algorithm (MSSA) was proposed. Firstly, the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm. Secondly, the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima. Finally, the local search mechanism based on the mountain climbing method was incorporated into… More >

  • Open Access

    ARTICLE

    LSDA-APF: A Local Obstacle Avoidance Algorithm for Unmanned Surface Vehicles Based on 5G Communication Environment

    Xiaoli Li, Tongtong Jiao#, Jinfeng Ma, Dongxing Duan, Shengbin Liang#,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 595-617, 2024, DOI:10.32604/cmes.2023.029367 - 22 September 2023

    Abstract In view of the complex marine environment of navigation, especially in the case of multiple static and dynamic obstacles, the traditional obstacle avoidance algorithms applied to unmanned surface vehicles (USV) are prone to fall into the trap of local optimization. Therefore, this paper proposes an improved artificial potential field (APF) algorithm, which uses 5G communication technology to communicate between the USV and the control center. The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios. Considering the various scenarios between the… More > Graphic Abstract

    LSDA-APF: A Local Obstacle Avoidance Algorithm for Unmanned Surface Vehicles Based on 5G Communication Environment

  • Open Access

    ARTICLE

    An Enhanced Equilibrium Optimizer for Solving Optimization Tasks

    Yuting Liu1, Hongwei Ding1,*, Zongshan Wang1,*, Gaurav Dhiman2,3,4, Zhijun Yang1, Peng Hu5

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2385-2406, 2023, DOI:10.32604/cmc.2023.039883 - 29 November 2023

    Abstract The equilibrium optimizer (EO) represents a new, physics-inspired metaheuristic optimization approach that draws inspiration from the principles governing the control of volume-based mixing to achieve dynamic mass equilibrium. Despite its innovative foundation, the EO exhibits certain limitations, including imbalances between exploration and exploitation, the tendency to local optima, and the susceptibility to loss of population diversity. To alleviate these drawbacks, this paper introduces an improved EO that adopts three strategies: adaptive inertia weight, Cauchy mutation, and adaptive sine cosine mechanism, called SCEO. Firstly, a new update formula is conceived by incorporating an adaptive inertia weight… More >

Displaying 11-20 on page 2 of 49. Per Page