Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access

    ARTICLE

    3-Methyladenine potentiates paclitaxel-induced apoptosis and phosphorylation of cyclin-dependent kinase 1 at thr161 in nasopharyngeal carcinoma cell

    XIAOQI WU1,2,#, YECHUAN HE1,2,#, YEQIN YUAN4, XIAN TAN1,2, LIN ZHU1,2, DANLING WANG1,2,4, BINYUAN JIANG3,4,*

    BIOCELL, Vol.48, No.5, pp. 861-872, 2024, DOI:10.32604/biocell.2024.048758

    Abstract Background: Nasopharyngeal carcinoma (NPC) exhibits a significant prevalence in the southern regions of China, and paclitaxel (PTX) is frequently employed as a medication for managing advanced NPC. However, drug resistance is typically accompanied by a poor prognosis. Exploring the synergistic potential of combining multiple chemotherapeutic agents may represent a promising avenue for optimizing treatment efficacy. Methods: This study investigated whether 3-Methyladenine (3-MA) could potentiated the effect of PTX and its potential molecular mechanism. Samples were divided into the following categories: Negative control (NC) with the solvent dimethyl sulfoxide (DMSO, 0.5% v/v), PTX (400 nM), 3-MA… More >

  • Open Access

    ARTICLE

    IL-17 induces NSCLC cell migration and invasion by elevating MMP19 gene transcription and expression through the interaction of p300-dependent STAT3-K631 acetylation and its Y705-phosphorylation

    WEN GE1,2,#, YA LI1,2,#, YUTING RUAN1,2, NINGXIA WU1,2, PEI MA3,4, TONGPENG XU3,4, YONGQIAN SHU3,4, YINGWEI WANG1,2, WEN QIU1,2, CHENHUI ZHAO3,4,*

    Oncology Research, Vol.32, No.4, pp. 625-641, 2024, DOI:10.32604/or.2023.031053

    Abstract The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer (NSCLC). Although researchers have disclosed that interleukin 17 (IL-17) can increase matrix metalloproteinases (MMPs) induction causing NSCLC cell metastasis, the underlying mechanism remains unclear. In the study, we found that IL-17 receptor A (IL-17RA), p300, p-STAT3, Ack-STAT3, and MMP19 were up-regulated both in NSCLC tissues and NSCLC cells stimulated with IL-17. p300, STAT3 and MMP19 overexpression or knockdown could raise or reduce IL-17-induced p-STAT3, Ack-STAT3 and MMP19 level as well as the cell migration and invasion. Mechanism investigation revealed… More > Graphic Abstract

    IL-17 induces NSCLC cell migration and invasion by elevating MMP19 gene transcription and expression through the interaction of p300-dependent STAT3-K631 acetylation and its Y705-phosphorylation

  • Open Access

    ARTICLE

    Low-molecular-weight fucoidan inhibits the proliferation of melanoma via Bcl-2 phosphorylation and PTEN/AKT pathway

    MINJI PARK1, CHULHWAN BANG2, WON-SOO YUN3, YUN-MI JEONG3,*

    Oncology Research, Vol.32, No.2, pp. 273-282, 2024, DOI:10.32604/or.2023.044362

    Abstract Fucoidan, a sulfate polysaccharide obtained from brown seaweed, has various bioactive properties, including anti-inflammatory, anti-cancer, anti-viral, anti-oxidant, anti-coagulant, anti-thrombotic, anti-angiogenic, and anti-Helicobacter pylori properties. However, the effects of low-molecular-weight fucoidan (LMW-F) on melanoma cell lines and three dimensional (3D) cell culture models are not well understood. This study aimed to investigate the effects of LMW-F on A375 human melanoma cells and cryopreserved biospecimens derived from patients with advanced melanoma. Ultrasonic wave was used to fragment fucoidan derived from Fucus vesiculosus into smaller LMW-F. MTT and live/dead assays showed that LMW-F inhibited cell proliferation in both A375 cells More >

  • Open Access

    ARTICLE

    Identification of microbial metabolites that accelerate the ubiquitin-dependent degradation of c-Myc

    ZIYU LIU1,2, AKIKO OKANO3,4, EMIKO SANADA1,3,4, YUSHI FUTAMURA3,4, TOSHIHIKO NOGAWA3,5, KOSUKE ISHIKAWA6, KENTARO SEMBA7,8, JIANG LI9, XIAOMENG LI10, HIROYUKI OSADA3,4,11,*, NOBUMOTO WATANABE1,2,4,*

    Oncology Research, Vol.31, No.5, pp. 655-666, 2023, DOI:10.32604/or.2023.030248

    Abstract

    Myc belongs to a family of proto-oncogenes that encode transcription factors. The overexpression of c-Myc causes many types of cancers. Recently, we established a system for screening c-Myc inhibitors and identified antimycin A by screening the RIKEN NPDepo chemical library. The specific mechanism of promoting tumor cell metastasis by high c-Myc expression remains to be explained. In this study, we screened approximately 5,600 microbial extracts using this system and identified a broth prepared from Streptomyces sp. RK19-A0402 strongly inhibits c-Myc transcriptional activity. After purification of the hit broth, we identified compounds closely related to the aglycone

    More > Graphic Abstract

    Identification of microbial metabolites that accelerate the ubiquitin-dependent degradation of c-Myc

  • Open Access

    ARTICLE

    Light-controlled phosphorylation in the TrkA-Y785 site by photosensitive UAAs activates the MAPK/ERK signaling pathway

    SHU ZHAO1,*, SHIXIN YE2

    BIOCELL, Vol.47, No.6, pp. 1377-1388, 2023, DOI:10.32604/biocell.2023.023874

    Abstract Background: This paper aims to establish a light-controlled phosphorylation detection method at the Y785 site of tropomyosin receptor kinase A (TrkA) receptor in mammalian cells by using genetic code expansion technology and detecting the effects of optical activation of this site on the downstream MAPK/ERK pathway. The study is based on the current situation that the regulatory mechanism of TrkA phosphorylation has not been fully elucidated. Methods: Two photosensitive unnatural amino acids, p-azido-L-phenylalanine (AzF) and photo-caged tyrosine (ONB) were introduced into the TrkA-Y785 site by genetic code expansion technology and site-directed mutagenesis. Western blotting and laser More >

  • Open Access

    VIEWPOINT

    Cell extrusion in development and cancer, what MARCKS the difference for epithelial integrity?

    LUCÍA VELOZ1,2, SANTIAGO A. BOSCH1,3, GONZALO APARICIO1,2,*, FLAVIO R. ZOLESSI1,2,*

    BIOCELL, Vol.46, No.3, pp. 639-644, 2022, DOI:10.32604/biocell.2022.018798

    Abstract Cell extrusion is an active mechanism to eliminate non-viable or supernumerary cells in healthy epithelia. It also plays a role in carcinogenesis, both in tumor growth (apical extrusion) and metastasis (basal extrusion). Embryonic tissues like the neuroepithelium, on the other hand, present rates of proliferation comparable to that of carcinomas, without the occurrence of cell extrusion. However, the downregulation or phosphorylation of actin-modulating proteins like MARCKS, causes extensive neuroepithelial apical cell extrusion. As changes in MARCKS proteins phosphorylation and expression have also been correlated to carcinogenesis, we propose here an integrated model for their functions More >

  • Open Access

    ARTICLE

    Neural stem cell-conditioned medium upregulated the PCMT1 expression and inhibited the phosphorylation of MST1 in SH-SY5Y cells induced by Aβ25-35

    XINWEI WU1, GUOYONG JIA2,*, HONGNA YANG3, CONGCONG SUN2, YING LIU2, ZENGYAN DIAO2

    BIOCELL, Vol.46, No.2, pp. 471-478, 2022, DOI:10.32604/biocell.2021.015701

    Abstract A progressive neurodegenerative disease, Alzheimer’s disease (AD). Studies suggest that highly expressed protein isoaspartate methyltransferase 1 (PCMT1) in brain tissue. In the current study, we explored the effects of neural stem cell-conditioned medium (NSC-CDM) on the PCMT1/MST1 pathway to alleviate Aβ25-35-induced damage in SH-SY5Y cells. Our data suggested that Aβ25-35 markedly inhibited cell viability. NSC-CDM or Neural stem cell-complete medium (NSC-CPM) had a suppression effect on toxicity when treatment with Aβ25-35, with a greater effect observed with NSC-CDM. Aβ25-35 + NSC-CDM group exhibited an increase in PCMT1 expression. sh-PCMT1 markedly decreased cell proliferation and suppressed the protective More >

  • Open Access

    ARTICLE

    The LncRNA FEZF1-AS1 promotes tumor proliferation in colon cancer by regulating the mitochondrial protein PCK2

    HUAMIN WANG1,#, YANTING WU1,#, ZHENLEI WANG2,#, YUHANG CHEN1, JINYU MO1, WEN GUAN1, YALI ZHANG1, HONGLIANG YAO1,*

    Oncology Research, Vol.29, No.3, pp. 201-215, 2021, DOI:10.32604/or.2022.03553

    Abstract LncRNAs and metabolism represents two factors involved in cancer initiation and progression. However, the interaction between lncRNAs and metabolism remains to be fully explored. In this study, lncRNA FEZF1-AS1 (FEZF1- AS1) was found upregulated in colon cancer after screening all the lncRNAs of colon cancer tissues deposited in TCGA, the result of which was further confirmed by RNAscope staining on a colon tissue chip. The results obtained using FEZF1- AS1 knockout colon cancer cells (SW480 KO and HCT-116 KO) constructed using CRISPR/Cas9 system confirmed the proliferation, invasion, and migration-promoting function of FEZF1-AS1 in vitro. Mechanistically, FEZF1-AS1… More >

  • Open Access

    ARTICLE

    iPhosD-PseAAC: Identification of phosphoaspartate sites in proteins using statistical moments and PseAAC

    ALAA OMRAN ALMAGRABI1, YASER DAANIAL KHAN2, SHER AFZAL KHAN3,*

    BIOCELL, Vol.45, No.5, pp. 1287-1298, 2021, DOI:10.32604/biocell.2021.013770

    Abstract Phosphoaspartate is one of the major components of eukaryotes and prokaryotic two-component signaling pathways, and it communicates the signal from the sensor of histidine kinase, through the response regulator, to the DNA alongside transcription features and initiates the transcription of correct response genes. Thus, the prediction of phosphoaspartate sites is critical, and its experimental identification can be expensive, time-consuming, and tedious. For this purpose, we propose iPhosD-PseAAC, a new computational model for predicting phosphoaspartate sites in a particular protein sequence using Chou’s 5-steps rues: (1) Benchmark dataset. (2) The feature extraction techniques such as pseudo More >

  • Open Access

    REVIEW

    The role of protein phosphorylation in the regulation of class switch recombination

    KANO TANABE1, RYUTARO KAJIHARA2,3,*

    BIOCELL, Vol.44, No.4, pp. 545-558, 2020, DOI:10.32604/biocell.2020.012740

    Abstract Antibody is an important part of adaptive immune system and is produced only by B cells. There are five main classes (IgM, IgD, IgG, IgA, IgE) and some subclasses in antibodies. IgM and IgD are produced by mature naïve B cells. On the other hand, IgG, IgA and IgE are produced by activated antigen-specific B cells via class switch recombination (CSR). CSR is the irreversible DNA rearrangement from upstream to downstream classes in immunoglobulin heavy chain genes. Co-stimulations of CD40 ligand (CD40L) and cytokines are required for induction of CSR by activating several transcription factors.… More >

Displaying 1-10 on page 1 of 16. Per Page