Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access

    ARTICLE

    Application of Polygonum minus Extract in Enhancing Drought Tolerance in Maize by Regulating Osmotic and Antioxidant System

    Mingzhao Han1, Susilawati Kasim1,*, Zhongming Yang2, Xi Deng2, Md Kamal Uddin1, Noor Baity Saidi3, Effyanti Mohd Shuib1

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 213-226, 2024, DOI:10.32604/phyton.2024.047150

    Abstract Drought stress is a major factor affecting plant growth and crop yield production. Plant extracts as natural biostimulants hold great potential to strengthen plants to overcome drought impacts. To explore the effect of Polygonum minus extract (PME) in enhancing drought tolerance in plants, a study was set up in a glasshouse environment using 10 different treatment combinations. PME foliar application were designed in CRD and effects were closely observed related to the growth, physiology, and antioxidant system changes in maize (Zea mays L.) under well-watered and drought conditions. The seaweed extract (SWE) was used as a comparison. Plants subjected to… More >

  • Open Access

    ARTICLE

    Effects of Inoculation with Phosphate Solubilizing Bacteria on the Physiology, Biochemistry, and Expression of Genes Related to the Protective Enzyme System of Fritillaria taipaiensis P. Y. Li

    Zhifen Shi1,3, Fumei Pan1,3, Xiaotian Kong2, Jiaqi Lang3, Mingyan Ye3, Qian Wu4, Guangzhi Wang1,*, Liang Han5,*, Nong Zhou3,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 247-260, 2024, DOI:10.32604/phyton.2024.046452

    Abstract Fritillaria taipaiensis P. Y. Li is a widely used medicinal herb in treating pulmonary diseases. In recent years, its wild resources have become scarce, and the demand for efficient artificial cultivation has significantly increased. This article is the first to apply phosphate solubilizing bacteria isolated from the rhizosphere soil of F. taipaiensis P. Y. Li to the cultivation process of F. taipaiensis P. Y. Li. The aim is to identify suitable reference strains for the artificial cultivation and industrial development of F. taipaiensis P. Y. Li by examining the effects of various phosphate solubilizing bacteria and their combinations on photosynthesis,… More >

  • Open Access

    ARTICLE

    TCD5 Enhances the Photosynthesis Capacity, Increases the Panicle Number and the Yield in Rice

    Jing Yang1,2, Yufeng Wang2, Zhanghua Hu3, Xiaoping Chen4, Yanjun Dong5,*, Sheng Teng1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.9, pp. 2649-2663, 2023, DOI:10.32604/phyton.2023.030710

    Abstract Improvement of photosynthetic efficiency is a major approach to increase crop yield potential. Previously, we cloned a gene encoding the chloroplast-located putative monooxygenase TCD5, which is essential in plastid development under low temperature in rice (Oryza sativa L.). In this study, the effects of TCD5 on the photosynthesis and the yields were investigated in rice. Two sets of genetic materials with three levels of TCD5 expression, including tcd5 mutant or TCD5 RNAi transgenic lines and TCD5 over-expression transgenic lines in Jiahua1 and Nipponbare backgrounds, were used in the field trails of multi-locations and multi-years. TCD5 positively affected the panicle number… More >

  • Open Access

    ARTICLE

    Selenium: A Game Changer in Plant Development, Growth, and Stress Tolerance, via the Modulation in Gene Expression and Secondary Metabolite Biosynthesis

    Ali Bandehagh1,*, Zahra Dehghanian2, Vahideh Gougerdchi1, Mohammad Anwar Hossain3,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.8, pp. 2301-2324, 2023, DOI:10.32604/phyton.2023.028586

    Abstract The presence of selenium (Se) is not widely established as crucial for crops, although it is commonly recognized as an important nutrient for animals as well as humans. Even so, it is inevitably accepted that Se usually contributes positively to the life cycle of plants. Previous findings suggested that small amounts of Se seem to have a productive role in growth and production. As a result, Se is assumed to function in multiple ways, primarily by influencing a variety of biochemical and physiological functions. Also, Se also acts as a plant antioxidant and pro-oxidant and confers tolerance against different abiotic… More >

  • Open Access

    ARTICLE

    Genotypic Divergence, Photosynthetic Efficiency, Sodium Extrusion, and Osmoprotectant Regulation Conferred Salt Tolerance in Sorghum

    Ashaduzzaman Sagar1 , Md. Sabibul Haque1, Md. Alamgir Hossain1, Md. Nesar Uddin1, Jannat E. Tajkia1, Md. Ashik Mia1, Toufika Hossain Shabi2, Md. Solaiman Ali Fakir1, Md. Abdul Kader3,4,5, Walid Soufan6, Md. Atikur Rahman7, Muhammad Aamir Iqbal8, Mohammad Sohidul Islam9, Ayman El Sabagh10,*, A. K. M. Zakir Hossain1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.8, pp. 2349-2368, 2023, DOI:10.32604/phyton.2023.028974

    Abstract Salt stress is one of the major limitations to modern agriculture that negatively influences plant growth and productivity. Salt tolerant cultivar can provide excellent solution to enhance stress tolerance with plant fitness to unfavorable environments. Therefore, this study was aimed to screen salt tolerant sorghum genotypes through evaluating of different morphological, biochemical, and physiological attributes in response to salinity stress. In this study, we have been evaluated total six sorghum genotypes including Hybrid sorgo, Debgiri, BD-703, BD-706, BD-707, and BD-725 under salt stress (12 dS m−1 NaCl). The response variables included length and weight of root and shoot, root: shoot… More >

  • Open Access

    ARTICLE

    The Physiological Mechanisms Underlying N2-Fixing Common Bean (Phaseolus vulgaris L.) Tolerance to Iron Deficiency

    Abdelmajid Krouma1,2,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.7, pp. 2133-2150, 2023, DOI:10.32604/phyton.2023.029048

    Abstract Iron is an essential element for plants as well as all living organisms, functioning in various physiological and biochemical processes such as photosynthesis, respiration, DNA synthesis, and N2 fixation. In the soil, Fe bioavailability is extremely low, especially under aerobic conditions and at high pH ranges. In contrast, plants with nodules on their roots that fix atmospheric nitrogen need much more iron. To highlight the physiological traits underlying the tolerance of N2-fixing common bean to iron deficiency, two genotypes were hydroponically cultivated in a greenhouse: Coco nain (CN) and Coco blanc (CB). Plants were inoculated with an efficient strain of… More >

  • Open Access

    ARTICLE

    Functional Analysis of the Genotypic Differences in Response of Pea (Pisum sativum L.) to Calcareous-Induced Iron Deficiency

    Sameh Barhoumi1, Hasna Ellouzi2, Abdelmajid Krouma1,3,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.2, pp. 521-536, 2023, DOI:10.32604/phyton.2022.023555

    Abstract Lime-induced iron chlorosis is a major nutritional disorder causing severe plant growth and yield reduction in the calcareous soils of Tunisia. The understanding the behavior of key metabolic functions of peas on calcareous soils, the identification of useful traits of tolerance, and the exploration of the genotypic differences in response to this constraint remain the most efficient approaches due to their coast, environmental benefits, and sustainability. For this purpose, a greenhouse experiment was conducted on three pea genotypes (Alexandra: Alex, Douce de provence: DP, and Merveille de Kelvedon: MK) cultivated on calcareous soil (Fe-deficient) and fertile soil (control). Plant growth,… More >

  • Open Access

    ARTICLE

    Exogenous melatonin alleviated growth inhibition and oxidative stress induced by drought stress in apple rootstock

    MEIGE WANG, JUAN GONG, CHUNHUI SONG, ZHENGYANG WANG, SHANGWEI SONG, JIAN JIAO, MIAOMIAO WANG, XIANBO ZHANG*, TUANHUI BAI*

    BIOCELL, Vol.46, No.7, pp. 1763-1770, 2022, DOI:10.32604/biocell.2022.018934

    Abstract

    Drought stress is one of the major environmental obstacles that limit the production and development of apples (Malus domestica Borkh.). The role of melatonin is well known in the protection of plants under environmental stresses. In this study, we investigated the effect of melatonin on apple rootstock M. hupehensis Rehd under drought stress. The results showed that drought inhibited the growth of M. hupehensis and dramatically reduced root surface area, root volume, the number of tips and forks, and root diameter. Drought-induced growth inhibition was significantly decreased by adding melatonin. Net photosynthetic rate (Pn), intercellular CO2 concentration (Ci), stomatal conductance… More >

  • Open Access

    ARTICLE

    Microalgae Improve the Photosynthetic Performance of Rice Seedlings (Oryza sativa L.) under Physiological Conditions and Cadmium Stress

    Ekaterina Yotsova1, Martin Stefanov1, Georgi Rashkov1, Margarita Kouzmanova2, Anelia Dobrikova1, Emilia Apostolova1,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.7, pp. 1365-1380, 2022, DOI:10.32604/phyton.2022.020566

    Abstract The aim of this study was to assess the impact of the microalgae Chlorella vulgaris on the rice seedlings at physiological conditions and under cadmium (Cd) stress. We examined the effects of C. vulgaris in the nutrient solution on rice seedlings grown hydroponically in the presence and the absence of 150 μM CdCl2, using the low (77 K) temperature and pulse amplitude modulated (PAM) chlorophyll fluorescence, P700 photooxidation measurements, photochemical activities of both photosystems, kinetic parameters of oxygen evolution, oxidative stress markers (MDA, H2O2 and proline), pigment content, growth parameters and Cd accumulation. Data revealed that the application C. vulgaris not… More >

  • Open Access

    ARTICLE

    Germination and Photosynthetic Responses to Salinity and Alkalinity in Avicenna marina Propagules

    Abdallah Atia1,2,*, Ahmed Abdallah Hussain3,4, Barhoumi Zouhaier3,5

    Phyton-International Journal of Experimental Botany, Vol.91, No.5, pp. 1015-1026, 2022, DOI:10.32604/phyton.2022.017778

    Abstract Avicenna marina (Forssk.) Vierh is a halophytic mangrove. The reproductive unit is green and has photosynthetic propagules. Mangroves are naturally exposed to fluctuations in some abiotic factors at the soil surface, including salinity and alkalinity. The objective of this study was to determine the effects of two salts including NaCl and NaHCO3 on germination processes and discuss the relationships between cotyledon photosynthesis and embryo axis growth in A. marina propagules. These propagules came from Al Birk, located on the shoreline of the Saudi Red Sea. The results showed that the studied salts did not affect neither the final germination percentage… More >

Displaying 1-10 on page 1 of 26. Per Page