Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (97)
  • Open Access

    ARTICLE

    Effects of Conductive Carbon Black on Thermal and Electrical Properties of Barium Titanate/Polyvinylidene Fluoride Composites for Road Application

    Zhenguo Wang, Lenan Wang, Yejing Meng*, Yong Wen, Jianzhong Pei

    Journal of Renewable Materials, Vol.11, No.5, pp. 2469-2489, 2023, DOI:10.32604/jrm.2023.025497 - 13 February 2023

    Abstract In the field of roads, due to the effect of vehicle loads, piezoelectric materials under the road surface can convert mechanical vibration into electrical energy, which can be further used in road facilities such as traffic signals and street lamps. The barium titanate/polyvinylidene fluoride (BaTiO3/PVDF) composite, the most common hybrid ceramic-polymer system, was widely used in various fields because the composite combines the good dielectric property of ceramic materials with the good flexibility of PVDF material. Previous studies have found that conductive particles can further improve the dielectric and piezoelectric properties of other composites. However, few… More >

  • Open Access

    ARTICLE

    Importance of Three-Dimensional Piezoelectric Coupling Modeling in Quantitative Analysis of Piezoelectric Actuators

    Daisuke Ishihara1,*, Prakasha Chigahalli Ramegowda2, Shoichi Aikawa1, Naoki Iwamaru1

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1187-1206, 2023, DOI:10.32604/cmes.2023.024614 - 06 February 2023

    Abstract This paper demonstrates the importance of three-dimensional (3-D) piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and strong coupling models for a thin cantilevered piezoelectric bimorph actuator. It is found that there is a significant difference between the strong and weak coupling solutions given by coupling direct and inverse piezoelectric effects (i.e., piezoelectric coupling effect). In addition, there is significant longitudinal bending caused by the constraint of the inverse piezoelectric effect in the width direction at the fixed end (i.e., 3-D effect). Hence, modeling of these More >

  • Open Access

    ARTICLE

    Vibration of a Two-Layer “Metal+PZT” Plate Contacting with Viscous Fluid

    Zeynep Ekicioglu Kuzeci1,*, Surkay D. Akbarov2,3

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4337-4362, 2023, DOI:10.32604/cmc.2023.033446 - 31 October 2022

    Abstract The present work investigates the mechanically forced vibration of the hydro-elasto-piezoelectric system consisting of a two-layer plate “elastic+PZT”, a compressible viscous fluid, and a rigid wall. It is assumed that the PZT (piezoelectric) layer of the plate is in contact with the fluid and time-harmonic linear forces act on the free surface of the elastic-metallic layer. This study is valuable because it considers for the first time the mechanical vibration of the metal+piezoelectric bilayer plate in contact with a fluid. It is also the first time that the influence of the volumetric concentration of the… More >

  • Open Access

    ARTICLE

    Experimental Investigation of Performance Characteristics of PZT-5A with Application to Fault Diagnosis

    Saqlain Abbas1,2, Zulkarnain Abbas3,4,*, Yanping Zhu2, Waqas Tariq Toor5, Xiaotong Tu6

    Structural Durability & Health Monitoring, Vol.16, No.4, pp. 307-321, 2022, DOI:10.32604/sdhm.2022.015266 - 03 January 2023

    Abstract In the previous couple of decades, techniques to reap energy and empower low voltage electronic devices have received outstanding attention. Most of the methods based on the piezoelectric effect to harvest the energy from ambient vibrations have been revolutionized. There’s an absence of experiment-based investigation which incorporates the microstructure analysis and crystal morphology of those energy harvest home materials. Moreover, the impact of variable mechanical and thermal load conditions has seldom been studied within the previous literature to utilize the effectiveness of those materials in several practical applications like structural health monitoring (SHM), etc. In… More >

  • Open Access

    ARTICLE

    Inkjet-printed Myoglobin based H2S Sensor

    KANCHANA M1, RAJASEKARAN E2, KUMAR B1, USHA ANTONY3

    Journal of Polymer Materials, Vol.38, No.3-4, pp. 309-325, 2021, DOI:10.32381/JPM.2021.38.3-4.11

    Abstract The objective of this research work is to investigate the feasibility of fabricating bio-based visual sensor indicators to detect the presence of H2S using inkjet printing. Myoglobin and chitosan were used as indicating and immobilizing materials respectively. 30 mg of myoglobin dissolved in 1 mL of tris buffer with 10% glycerol gave optimum jettability properties. Similarly, drop formation was optimal for 0.50% m/v chitosan solution diluted to 10 cP viscosity. The samples were fabricated in layer-by-layer approach and indicator with 2 layers of chitosan and 4 layers of myoglobin gave maximum sensitivity with 14.42 for 0.7 More >

  • Open Access

    ARTICLE

    THIN THERMAL MANAGEMENT MODULES USING FLATTENED HEAT PIPES AND PIEZOELECTRIC FANS FOR ELECTRONIC DEVICES

    Jason Velardoa, Randeep Singha,*, Mohammad Shahed Ahameda, Masataka Mochizukib, Abhijit Datec, Aliakbar Akbarzadehc

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-11, 2021, DOI:10.5098/hmt.17.1

    Abstract Thermal solutions play an integral role in managing heat loads for electronic devices. As these electronics become more compact and portable, improved thermal management solutions need to be introduced. Thin flattened heat pipes (0.8mm – 2.0mm thick) and piezoelectric fans (1mm thick) have been proposed here for this purpose. The maximum heat carrying capacity of the flattened heat pipe was experimentally determined and found to be a function of the flattened heat pipe thickness. Reductions from 48W at 2.0mm to 7W at 0.8mm were observed. This was expected to be due to capillary limitations. The More >

  • Open Access

    ARTICLE

    Damage Detection in CFST Column by Simulation of Ultrasonic Waves Using STFT-Based Spectrogram and Welch Power Spectral Density Estimate

    Nadom K. Mutlib1,*, Muna N. Ismael1, Shahrizan Baharom2

    Structural Durability & Health Monitoring, Vol.15, No.3, pp. 227-246, 2021, DOI:10.32604/sdhm.2021.010725 - 07 September 2021

    Abstract Structural health monitoring employs different tools and techniques to provide a prediction for damages that occur in various structures. Damages such as debond and cracks in concrete-filled steel tube column (CFST) are serious defects that threaten the integrity of the structural members. Ultrasonic waves monitoring applied to the CFST column is necessary to detect damages and quantify their size. However, without appropriate signal processing tools, the results of the monitoring process could not be crucial. In this research, a monitoring process based on a Multiphysics numerical simulation study was carried out. Two signal processing tools:… More >

  • Open Access

    ARTICLE

    Improving Functionality of 2DOF Piezoelectric Cantilever for Broadband Vibration Energy Harvesting Using Magnets

    Junxiang Jiang1,2, Shaogang Liu1,*, Lifeng Feng3

    Energy Engineering, Vol.118, No.5, pp. 1287-1303, 2021, DOI:10.32604/EE.2021.015354 - 16 July 2021

    Abstract This paper presents a 2DOF nonlinear piezoelectric energy harvester for improving the efficiency of energy harvesting in low frequency range. The device consisted of an L-shaped piezoelectric cantilever with a magnet at the tip of the first beam and two external magnets on the pedestal. The distance between the magnets which generated nonlinear magnetic attraction was adjusted such that the system can exhibit monostable or bistable characteristics. First, the model of this piezoelectric energy harvester was established and the dynamic equation was derived based on the magnetic attractive force. Then, the nonlinear dynamic responses of More >

  • Open Access

    ARTICLE

    A New BEM Modeling Algorithm for Size-Dependent Thermopiezoelectric Problems in Smart Nanostructures

    Mohamed Abdelsabour Fahmy1,2,*

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 931-944, 2021, DOI:10.32604/cmc.2021.018191 - 04 June 2021

    Abstract The main objective of this paper is to introduce a new theory called size-dependent thermopiezoelectricity for smart nanostructures. The proposed theory includes the combination of thermoelastic and piezoelectric influences which enable us to describe the deformation and mechanical behaviors of smart nanostructures subjected to thermal, and piezoelectric loadings. Because of difficulty of experimental research problems associated with the proposed theory. Therefore, we propose a new boundary element method (BEM) formulation and algorithm for the solution of such problems, which involve temperatures, normal heat fluxes, displacements, couple-tractions, rotations, force-tractions, electric displacement, and normal electric displacement as… More >

  • Open Access

    ARTICLE

    Experimental Study of Effect of Temperature Variations on the Impedance Signature of PZT Sensors for Fatigue Crack Detection

    Saqlain Abbas1,2,*, Fucai Li1, Zulkarnain Abbas3,4, Taufeeq Ur Rehman Abbasi5, Xiaotong Tu6, Riffat Asim Pasha7

    Sound & Vibration, Vol.55, No.1, pp. 1-18, 2021, DOI:10.32604/sv.2021.013754 - 19 January 2021

    Abstract Structural health monitoring (SHM) is recognized as an efficient tool to interpret the reliability of a wide variety of infrastructures. To identify the structural abnormality by utilizing the electromechanical coupling property of piezoelectric transducers, the electromechanical impedance (EMI) approach is preferred. However, in real-time SHM applications, the monitored structure is exposed to several varying environmental and operating conditions (EOCs). The previous study has recognized the temperature variations as one of the serious EOCs that affect the optimal performance of the damage inspection process. In this framework, an experimental setup is developed in current research to… More >

Displaying 11-20 on page 2 of 97. Per Page