Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    REVIEW

    A Review of Methods for “Pump as Turbine” (PAT) Performance Prediction and Optimal Design

    Xiao Sun1, Huifan Huang1, Yanjuan Zhao2,*, Lianghuai Tong3,*, Haibin Lin3, Yuliang Zhang4

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.6, pp. 1261-1298, 2025, DOI:10.32604/fdmp.2025.064329 - 30 June 2025

    Abstract The reverse operation of existing centrifugal pumps, commonly referred to as “Pump as Turbine” (PAT), is a key approach for recovering liquid pressure energy. As a type of hydraulic machinery characterized by a simple structure and user-friendly operation, PAT holds significant promise for application in industrial waste energy recovery systems. This paper reviews recent advancements in this field, with a focus on pump type selection, performance prediction, and optimization design. First, the advantages of various prototype pumps, including centrifugal, axial-flow, mixed-flow, screw, and plunger pumps, are examined in specific application scenarios while analyzing their suitability… More >

  • Open Access

    ARTICLE

    Optimization of Guide Vane Geometry in a Pump-as-Turbine through an Orthogonal Test Approach

    Fengxia Shi1,2, Pengcheng Wang1,*, Haonan Zhan1, Xiangyun Shi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1221-1238, 2025, DOI:10.32604/fdmp.2025.062244 - 30 May 2025

    Abstract To investigate the impact of guide vane geometry—specifically, outlet angle, blade count, and radial height—on the performance of a Pump as Turbine (PAT), radial guide vanes were introduced upstream of the impeller in an IS80-50-315 low-specific-speed centrifugal PAT. Using an orthogonal test design, numerical simulations were conducted on 16 different PAT configurations, and the influence of vane geometry on performance was analyzed through a range analysis to determine the optimal parameter combinations. The results indicate that the number of guide vane blades significantly affects both the hydraulic efficiency and water head of the PAT under More >

  • Open Access

    ARTICLE

    NUMERICAL ANALYSIS OF A PROTOTYPE PUMP AS TURBINE AT DIFFERENT WORKING CONDITIONS

    Xiao Suna, Fan-Kang Zenga, Jia-Bing Yanga, Feng-Lin Zhoua, Yu-Liang Zhangb,*

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-6, 2021, DOI:10.5098/hmt.17.5

    Abstract In order to better study the internal flow characteristics of centrifugal pump as turbine, CFX software is employed to carry out numerical simulation to obtain flow field under different working conditions for pump as turbine based on the standard k - epsilon turbulence model and the SIMPLEC algorithm. The efficiency curves of the pump and pump as turbine are obtained under different working conditions. The results show that the effciency characteristics of the pump change greatly during the process of pumping. The efficiency of the turbine is higher than that of the pump under the respective More >

  • Open Access

    ARTICLE

    A Study on the Unsteady Flow Characteristics and Energy Conversion in the Volute of a Pump-as-Turbine Device

    Senchun Miao1,2,*, Hongbiao Zhang1, Wanglong Tian1, Yinqiang Li2

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.6, pp. 1021-1036, 2021, DOI:10.32604/fdmp.2021.016925 - 08 September 2021

    Abstract To study the unsteady flow and related energy conversion process in the volute of a pump-as-turbine (PAT) device, six different working conditions have been considered. Through numerical calculation, the spatio-temporal variation of static pressure, dynamic pressure, total pressure and turbulent energy dissipation have been determined in each section of the volute. It is concluded that the reduction of the total power of two adjacent sections of the PAT volute is equal to the sum of the power lost by the fluid while moving from one section to the other and the power output from the More >

  • Open Access

    ARTICLE

    Study on Energy Conversion Characteristics in Volute of Pump as Turbine

    Senchun Miao1,2,*, Hongbiao Zhang1, Fengxia Shi1, Xiaohui Wang1, Xijin Ma1

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.1, pp. 201-214, 2021, DOI:10.32604/fdmp.2021.012950 - 09 February 2021

    Abstract A volute is a curved funnel with cross-sectional area increasing towards the discharge port. The volute of a centrifugal pump is the casing hosting the fluid being pumped by the impeller. In Pump-as-turbine devices (PAT), vice versa the volute plays the role of energy conversion element. In the present analysis, this process is analyzed using CFD. The results show that in the contraction section of volute the conversion between dynamic pressure energy and static pressure energy essentially depends on the reduction of flow area, while in the spiral section, frictional losses also play a significant More >

  • Open Access

    ARTICLE

    Optimization of a Centrifugal Pump Used as a Turbine Impeller By Means of an Orthogonal Test Approach

    Peng Tian1, Jun Huang1, Weidong Shi1,2,*, Ling Zhou1

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.2, pp. 139-151, 2019, DOI:10.32604/fdmp.2019.05216

    Abstract A prototype centrifugal pump with a specific speed of 110 is used to investigate and optimize the performances of a turbine for power generation. Particular attention is given to the design of the internal impeller. The internal flow field is simulated in the framework of a commercial computational fluid dynamics software (ANSYS). Four geometrical parameters of the impeller are considered, i.e., the inlet diameter, the inlet width, the blade number, and the blade angle. The optimization is carried out on the basis of a three-level approach relying on an orthogonal test method. The results of More >

Displaying 1-10 on page 1 of 6. Per Page