Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (106)
  • Open Access

    ARTICLE

    An Optimized System of Random Forest Model by Global Harmony Search with Generalized Opposition-Based Learning for Forecasting TBM Advance Rate

    Yingui Qiu1, Shuai Huang1, Danial Jahed Armaghani2, Biswajeet Pradhan3, Annan Zhou4, Jian Zhou1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2873-2897, 2024, DOI:10.32604/cmes.2023.029938

    Abstract As massive underground projects have become popular in dense urban cities, a problem has arisen: which model predicts the best for Tunnel Boring Machine (TBM) performance in these tunneling projects? However, performance level of TBMs in complex geological conditions is still a great challenge for practitioners and researchers. On the other hand, a reliable and accurate prediction of TBM performance is essential to planning an applicable tunnel construction schedule. The performance of TBM is very difficult to estimate due to various geotechnical and geological factors and machine specifications. The previously-proposed intelligent techniques in this field are mostly based on a… More >

  • Open Access

    ARTICLE

    Electroencephalography (EEG) Based Neonatal Sleep Staging and Detection Using Various Classification Algorithms

    Hafza Ayesha Siddiqa1, Muhammad Irfan1, Saadullah Farooq Abbasi2,*, Wei Chen1

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1759-1778, 2023, DOI:10.32604/cmc.2023.041970

    Abstract Automatic sleep staging of neonates is essential for monitoring their brain development and maturity of the nervous system. EEG based neonatal sleep staging provides valuable information about an infant’s growth and health, but is challenging due to the unique characteristics of EEG and lack of standardized protocols. This study aims to develop and compare 18 machine learning models using Automated Machine Learning (autoML) technique for accurate and reliable multi-channel EEG-based neonatal sleep-wake classification. The study investigates autoML feasibility without extensive manual selection of features or hyperparameter tuning. The data is obtained from neonates at post-menstrual age 37 ± 05 weeks.… More >

  • Open Access

    ARTICLE

    Diagnosis of Autism Spectrum Disorder by Imperialistic Competitive Algorithm and Logistic Regression Classifier

    Shabana R. Ziyad1,*, Liyakathunisa2, Eman Aljohani2, I. A. Saeed3

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1515-1534, 2023, DOI:10.32604/cmc.2023.040874

    Abstract Autism spectrum disorder (ASD), classified as a developmental disability, is now more common in children than ever. A drastic increase in the rate of autism spectrum disorder in children worldwide demands early detection of autism in children. Parents can seek professional help for a better prognosis of the child’s therapy when ASD is diagnosed under five years. This research study aims to develop an automated tool for diagnosing autism in children. The computer-aided diagnosis tool for ASD detection is designed and developed by a novel methodology that includes data acquisition, feature selection, and classification phases. The most deterministic features are… More >

  • Open Access

    ARTICLE

    Robust Machine Learning Technique to Classify COVID-19 Using Fusion of Texture and Vesselness of X-Ray Images

    Shaik Mahaboob Basha1,*, Victor Hugo C. de Albuquerque2, Samia Allaoua Chelloug3,*, Mohamed Abd Elaziz4,5,6,7, Shaik Hashmitha Mohisin8, Suhail Parvaze Pathan9

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1981-2004, 2024, DOI:10.32604/cmes.2023.031425

    Abstract Manual investigation of chest radiography (CXR) images by physicians is crucial for effective decision-making in COVID-19 diagnosis. However, the high demand during the pandemic necessitates auxiliary help through image analysis and machine learning techniques. This study presents a multi-threshold-based segmentation technique to probe high pixel intensity regions in CXR images of various pathologies, including normal cases. Texture information is extracted using gray co-occurrence matrix (GLCM)-based features, while vessel-like features are obtained using Frangi, Sato, and Meijering filters. Machine learning models employing Decision Tree (DT) and Random Forest (RF) approaches are designed to categorize CXR images into common lung infections, lung… More > Graphic Abstract

    Robust Machine Learning Technique to Classify COVID-19 Using Fusion of Texture and Vesselness of X-Ray Images

  • Open Access

    ARTICLE

    Intelligent Traffic Surveillance through Multi-Label Semantic Segmentation and Filter-Based Tracking

    Asifa Mehmood Qureshi1, Nouf Abdullah Almujally2, Saud S. Alotaibi3, Mohammed Hamad Alatiyyah4, Jeongmin Park5,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3707-3725, 2023, DOI:10.32604/cmc.2023.040738

    Abstract Road congestion, air pollution, and accident rates have all increased as a result of rising traffic density and worldwide population growth. Over the past ten years, the total number of automobiles has increased significantly over the world. In this paper, a novel method for intelligent traffic surveillance is presented. The proposed model is based on multilabel semantic segmentation using a random forest classifier which classifies the images into five classes. To improve the results, mean-shift clustering was applied to the segmented images. Afterward, the pixels given the label for the vehicle were extracted and blob detection was applied to mark… More >

  • Open Access

    ARTICLE

    Explainable AI and Interpretable Model for Insurance Premium Prediction

    Umar Abdulkadir Isa*, Anil Fernando*

    Journal on Artificial Intelligence, Vol.5, pp. 31-42, 2023, DOI:10.32604/jai.2023.040213

    Abstract Traditional machine learning metrics (TMLMs) are quite useful for the current research work precision, recall, accuracy, MSE and RMSE. Not enough for a practitioner to be confident about the performance and dependability of innovative interpretable model 85%–92%. We included in the prediction process, machine learning models (MLMs) with greater than 99% accuracy with a sensitivity of 95%–98% and specifically in the database. We need to explain the model to domain specialists through the MLMs. Human-understandable explanations in addition to ML professionals must establish trust in the prediction of our model. This is achieved by creating a model-independent, locally accurate explanation… More >

  • Open Access

    ARTICLE

    Ensemble-Based Approach for Efficient Intrusion Detection in Network Traffic

    Ammar Almomani1,2,*, Iman Akour3, Ahmed M. Manasrah4,5, Omar Almomani6, Mohammad Alauthman7, Esra’a Abdullah1, Amaal Al Shwait1, Razan Al Sharaa1

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2499-2517, 2023, DOI:10.32604/iasc.2023.039687

    Abstract The exponential growth of Internet and network usage has necessitated heightened security measures to protect against data and network breaches. Intrusions, executed through network packets, pose a significant challenge for firewalls to detect and prevent due to the similarity between legitimate and intrusion traffic. The vast network traffic volume also complicates most network monitoring systems and algorithms. Several intrusion detection methods have been proposed, with machine learning techniques regarded as promising for dealing with these incidents. This study presents an Intrusion Detection System Based on Stacking Ensemble Learning base (Random Forest, Decision Tree, and k-Nearest-Neighbors). The proposed system employs pre-processing… More >

  • Open Access

    ARTICLE

    Detection of Alzheimer’s Disease Progression Using Integrated Deep Learning Approaches

    Jayashree Shetty1, Nisha P. Shetty1,*, Hrushikesh Kothikar1, Saleh Mowla1, Aiswarya Anand1, Veeraj Hegde2

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1345-1362, 2023, DOI:10.32604/iasc.2023.039206

    Abstract Alzheimer’s disease (AD) is an intensifying disorder that causes brain cells to degenerate early and destruct. Mild cognitive impairment (MCI) is one of the early signs of AD that interferes with people’s regular functioning and daily activities. The proposed work includes a deep learning approach with a multimodal recurrent neural network (RNN) to predict whether MCI leads to Alzheimer’s or not. The gated recurrent unit (GRU) RNN classifier is trained using individual and correlated features. Feature vectors are concatenated based on their correlation strength to improve prediction results. The feature vectors generated are given as the input to multiple different… More >

  • Open Access

    ARTICLE

    Cartographie des surfaces pastorales à l’aide des données Sentinel 2 L3A et des données ouvertes

    Promesses et réalités

    Urcel Kalenga Tshingomba1,2, Magali Jouven2, Lucile Sautot2 , Imad Shaqura2, Maguelonne Teisseire1

    Revue Internationale de Géomatique, Vol.30, No.2, pp. 245-277, 2020, DOI:10.3166/rig.2022.00112

    Abstract Dans cet article, les auteurs expérimentent une démarche permettant de produire une cartographie cohérente de l’occupation des sols des surfaces des parcours en zones périméditerranéennes françaises représentées par les régions Occitanie et Provence-AlpesCôte d’Azur. Quatre différentes sources de données sont utilisées : l’occupation des sols millésime OSO (OSO), le Registre parcellaire graphique (RPG), la BD-Forêt V.2.0 et les données satellites Sentinel 2 L3A. Le RPG de 2019 et la BD-Forêt actualisée en 2018 ont été utilisés comme principale source de données de référence pour l’entraînement des modèles en vue de classifier les objets OSO 2019 de faible F-score, après extraction… More >

  • Open Access

    ARTICLE

    Power Transformer Fault Diagnosis Using Random Forest and Optimized Kernel Extreme Learning Machine

    Tusongjiang Kari1, Zhiyang He1, Aisikaer Rouzi2, Ziwei Zhang3, Xiaojing Ma1,*, Lin Du1

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 691-705, 2023, DOI:10.32604/iasc.2023.037617

    Abstract Power transformer is one of the most crucial devices in power grid. It is significant to determine incipient faults of power transformers fast and accurately. Input features play critical roles in fault diagnosis accuracy. In order to further improve the fault diagnosis performance of power transformers, a random forest feature selection method coupled with optimized kernel extreme learning machine is presented in this study. Firstly, the random forest feature selection approach is adopted to rank 42 related input features derived from gas concentration, gas ratio and energy-weighted dissolved gas analysis. Afterwards, a kernel extreme learning machine tuned by the Aquila… More >

Displaying 11-20 on page 2 of 106. Per Page