Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (106)
  • Open Access

    ARTICLE

    GLMCNet: A Global-Local Multiscale Context Network for High-Resolution Remote Sensing Image Semantic Segmentation

    Yanting Zhang1, Qiyue Liu1,2, Chuanzhao Tian1,2,*, Xuewen Li1, Na Yang1, Feng Zhang1, Hongyue Zhang3

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-25, 2026, DOI:10.32604/cmc.2025.068403 - 10 November 2025

    Abstract High-resolution remote sensing images (HRSIs) are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies. However, their significant scale changes and wealth of spatial details pose challenges for semantic segmentation. While convolutional neural networks (CNNs) excel at capturing local features, they are limited in modeling long-range dependencies. Conversely, transformers utilize multihead self-attention to integrate global context effectively, but this approach often incurs a high computational cost. This paper proposes a global-local multiscale context network (GLMCNet) to extract both global and local multiscale contextual information from HRSIs.… More >

  • Open Access

    ARTICLE

    Multi-Constraint Generative Adversarial Network-Driven Optimization Method for Super-Resolution Reconstruction of Remote Sensing Images

    Binghong Zhang, Jialing Zhou, Xinye Zhou, Jia Zhao, Jinchun Zhu, Guangpeng Fan*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.068309 - 10 November 2025

    Abstract Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring, urban planning, and disaster assessment. However, traditional methods exhibit deficiencies in detail recovery and noise suppression, particularly when processing complex landscapes (e.g., forests, farmlands), leading to artifacts and spectral distortions that limit practical utility. To address this, we propose an enhanced Super-Resolution Generative Adversarial Network (SRGAN) framework featuring three key innovations: (1) Replacement of L1/L2 loss with a robust Charbonnier loss to suppress noise while preserving edge details via adaptive gradient balancing; (2) A multi-loss joint optimization strategy… More >

  • Open Access

    ARTICLE

    MewCDNet: A Wavelet-Based Multi-Scale Interaction Network for Efficient Remote Sensing Building Change Detection

    Jia Liu1, Hao Chen1, Hang Gu1, Yushan Pan2,3, Haoran Chen1, Erlin Tian4, Min Huang4, Zuhe Li1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-24, 2026, DOI:10.32604/cmc.2025.068162 - 10 November 2025

    Abstract Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning, disaster emergency response, and resource management. However, existing methods face challenges such as spectral similarity between buildings and backgrounds, sensor variations, and insufficient computational efficiency. To address these challenges, this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network (MewCDNet), which integrates the advantages of Convolutional Neural Networks and Transformers, balances computational costs, and achieves high-performance building change detection. The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction, integrates multi-level feature maps through a multi-scale fusion… More >

  • Open Access

    ARTICLE

    Spatio-Temporal Flood Inundation Dynamics and Land Use Transformation in the Jhelum River Basin Using Remote Sensing and Historical Hydrological Data

    Ihsan Qadir1, Usama Naeem2, Ahmed Nouman3, Aamir Raza4, Jun Wu1,*

    Revue Internationale de Géomatique, Vol.34, pp. 831-853, 2025, DOI:10.32604/rig.2025.069020 - 10 November 2025

    Abstract The Jhelum River Basin in Pakistan has experienced recurrent and severe flooding over the past several decades, leading to substantial economic losses, infrastructure damage, and socio-environmental disruptions. This study uses multi-temporal satellite remote sensing data with historical hydrological records to map the spatial and temporal dynamics of major flood events occurring between 1988 and 2019. By utilizing satellite imagery from Landsat 5, Landsat 8, and Sentinel-2, key flood events were analyzed through the application of water indices such as the Normalized Difference Water Index (NDWI) and the Modified NDWI (MNDWI) to delineate flood extents. Historical… More >

  • Open Access

    ARTICLE

    Tree Detection in RGB Satellite Imagery Using YOLO-Based Deep Learning Models

    Irfan Abbas, Robertas Damaševičius*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 483-502, 2025, DOI:10.32604/cmc.2025.066578 - 29 August 2025

    Abstract Forests are vital ecosystems that play a crucial role in sustaining life on Earth and supporting human well-being. Traditional forest mapping and monitoring methods are often costly and limited in scope, necessitating the adoption of advanced, automated approaches for improved forest conservation and management. This study explores the application of deep learning-based object detection techniques for individual tree detection in RGB satellite imagery. A dataset of 3157 images was collected and divided into training (2528), validation (495), and testing (134) sets. To enhance model robustness and generalization, data augmentation was applied to the training part… More >

  • Open Access

    ARTICLE

    Hybrid HRNet-Swin Transformer: Multi-Scale Feature Fusion for Aerial Segmentation and Classification

    Asaad Algarni1, Aysha Naseer 2, Mohammed Alshehri3, Yahya AlQahtani4, Abdulmonem Alshahrani4, Jeongmin Park5,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1981-1998, 2025, DOI:10.32604/cmc.2025.064268 - 29 August 2025

    Abstract Remote sensing plays a pivotal role in environmental monitoring, disaster relief, and urban planning, where accurate scene classification of aerial images is essential. However, conventional convolutional neural networks (CNNs) struggle with long-range dependencies and preserving high-resolution features, limiting their effectiveness in complex aerial image analysis. To address these challenges, we propose a Hybrid HRNet-Swin Transformer model that synergizes the strengths of HRNet-W48 for high-resolution segmentation and the Swin Transformer for global feature extraction. This hybrid architecture ensures robust multi-scale feature fusion, capturing fine-grained details and broader contextual relationships in aerial imagery. Our methodology begins with… More >

  • Open Access

    ARTICLE

    Spatiotemporal Variability of Atmospheric Pollutants in Syria: A Multi-Year Assessment Using Sentinel-5P Data

    Almustafa Abd Elkader Ayek1, Bilel Zerouali2,*, Ankur Srivastava3, Mohannad Ali Loho4,5, Nadjem Bailek6,7, Celso Augusto Guimarães Santos8,9

    Revue Internationale de Géomatique, Vol.34, pp. 669-689, 2025, DOI:10.32604/rig.2025.067137 - 19 August 2025

    Abstract This study investigates the spatial and temporal dynamics of key air pollutants—nitrogen dioxide (NO2), carbon monoxide (CO), methane (CH4), formaldehyde (HCHO), and the ultraviolet aerosol index (UVAI)—over the period 2019–2024. Utilizing high-resolution remote sensing data from the Sentinel-5 Precursor satellite and its TROPOspheric Monitoring Instrument (TROPOMI) processed via Google Earth Engine (GEE), pollutant concentrations were analyzed, with spatial visualizations produced using ArcGIS Pro. The results reveal that urban and industrial hotspots—notably in Damascus, Aleppo, Homs, and Hama—exhibit elevated NO2 and CO levels, strongly correlated with population density, traffic, and industrial emissions. Temporal trends indicate significant pollutant fluctuations More > Graphic Abstract

    Spatiotemporal Variability of Atmospheric Pollutants in Syria: A Multi-Year Assessment Using Sentinel-5P Data

  • Open Access

    ARTICLE

    Retrieval of Surface Soil Moisture Using Landsat 8 TIRS Data: A Case Study of Faisalabad

    Uzair Abbas1, Zahid Maqbool1, Muhammad Adnan Shahid1,2,*, Muhammad Safdar1,2, Saif Ullah Khan1,3

    Revue Internationale de Géomatique, Vol.34, pp. 655-668, 2025, DOI:10.32604/rig.2025.064279 - 11 August 2025

    Abstract This study was conducted to devise an integrated methodology for retrieval of surface soil moisture (SSM) using Landsat 8 TIRS data. For this purpose, Landsat 8 images of 15 May 2021 (pre-monsoon) and 20 November 2021 (post-monsoon) were processed for retrieval of soil moisture index (SMI) based on land surface temperature (LST). Moreover, field-based SM in the laboratory was also determined and correlated with satellite-based SMI. A moderate correlation between field-based SM and satellite-based SMI with R2 = 0.60 was obtained. Based on this relationship, SSM maps of Tehsil Faisalabad Saddar for the pre-and post-monsoon seasons… More >

  • Open Access

    REVIEW

    Earth Observation for Comprehensive Soil Health Assessment and Monitoring

    Lachezar Filchev1,*, Milen Chanev1, Galin Petrov2

    Revue Internationale de Géomatique, Vol.34, pp. 513-533, 2025, DOI:10.32604/rig.2025.064280 - 06 August 2025

    Abstract This review article provides a comprehensive analysis of Earth Observation (EO) applications for soil health assessment in Europe and abroad. The study explores the effectiveness of EO in capturing contextual information about various soil properties and conditions, as well as its role in monitoring soil health over time. The authors examine the current state of operational, semi-operational, and developing EO products and services relevant to soil health indicators. These include vegetation cover, forest cover, soil organic carbon, soil structure, landscape heterogeneity, and the presence of soil pollutants, excess nutrients, and salts. The review identifies gaps… More > Graphic Abstract

    Earth Observation for Comprehensive Soil Health Assessment and Monitoring

  • Open Access

    ARTICLE

    Limitation of RGB-Derived Vegetation Indices Using UAV Imagery for Biomass Estimation during Buckwheat Flowering

    E. M. B. M. Karunathilake1,#, Thanh Tuan Thai1,2,3,#, Sheikh Mansoor1, Anh Tuan Le3,4, Faheem Shehzad Baloch1,5, Yong Suk Chung1,*, Dong-Wook Kim6,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.7, pp. 2215-2228, 2025, DOI:10.32604/phyton.2025.067439 - 31 July 2025

    Abstract Accurate and timely estimation of above-ground biomass is crucial for understanding crop growth dynamics, optimizing agricultural input management, and assessing productivity in sustainable farming practices. However, conventional biomass assessments are destructive and resource-intensive. In contrast, remote sensing techniques, particularly those utilizing low-altitude unmanned aerial vehicles, provide a non-destructive approach to collect imagery data on plant canopy features, including spectral reflectance and structural details at any stage of the crop life cycle. This study explores the potential visible-light-derived vegetative indices to improve biomass prediction during the flowering period of buckwheat (Fagopyrum tataricum). Red, green, and blue (RGB)… More >

Displaying 1-10 on page 1 of 106. Per Page