Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (207)
  • Open Access

    ARTICLE

    Feasibility of Micro-Hydro Power for Rural Electrification in Bangladesh: A Case Study from the Chittagong Hill Tracts

    Ratan Kumar Das1,*, Abhijit Date1, Harun Chowdhury1, Hamed Hassan2

    Energy Engineering, Vol.122, No.12, pp. 4815-4835, 2025, DOI:10.32604/ee.2025.071727 - 27 November 2025

    Abstract Bangladesh has achieved notable progress in expanding electricity access nationwide. Nonetheless, remote and topographically challenging regions such as the Chittagong Hill Tracts (CHT) continue to face coverage gaps due to grid extension difficulties. This research investigates the technical feasibility of micro-hydro power (MHP) systems as viable off-grid solutions for rural electrification in CHT. Field surveys conducted across various sites assessed available head and flow rates using GPS-based elevation measurements and portable flow meters. Seasonal fluctuations were factored into the analysis to ensure year-round operational viability. The study involved estimating power output, selecting appropriate turbine types… More > Graphic Abstract

    Feasibility of Micro-Hydro Power for Rural Electrification in Bangladesh: A Case Study from the Chittagong Hill Tracts

  • Open Access

    ARTICLE

    Optimization Scheduling of Hydrogen-Coupled Electro-Heat-Gas Integrated Energy System Based on Generative Adversarial Imitation Learning

    Baiyue Song1, Chenxi Zhang2, Wei Zhang2,*, Leiyu Wan2

    Energy Engineering, Vol.122, No.12, pp. 4919-4945, 2025, DOI:10.32604/ee.2025.068971 - 27 November 2025

    Abstract Hydrogen energy is a crucial support for China’s low-carbon energy transition. With the large-scale integration of renewable energy, the combination of hydrogen and integrated energy systems has become one of the most promising directions of development. This paper proposes an optimized scheduling model for a hydrogen-coupled electro-heat-gas integrated energy system (HCEHG-IES) using generative adversarial imitation learning (GAIL). The model aims to enhance renewable-energy absorption, reduce carbon emissions, and improve grid-regulation flexibility. First, the optimal scheduling problem of HCEHG-IES under uncertainty is modeled as a Markov decision process (MDP). To overcome the limitations of conventional deep… More >

  • Open Access

    REVIEW

    A Review of Modern Strategies for Enhancing Power Quality and Hosting Capacity in Renewable-Integrated Grids: From Conventional Devices to AI-Based Solutions

    Adel A.Abou El-Ela1, Ragab A. El-Sehiemy2,3,4,*, Abdallah Nazih1, Asmaa A. Mubarak5, Eman S. Ali1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1349-1388, 2025, DOI:10.32604/cmes.2025.069507 - 26 November 2025

    Abstract Distribution systems face significant challenges in maintaining power quality issues and maximizing renewable energy hosting capacity due to the increased level of photovoltaic (PV) systems integration associated with varying loading and climate conditions. This paper provides a comprehensive overview on the exit strategies to enhance distribution system operation, with a focus on harmonic mitigation, voltage regulation, power factor correction, and optimization techniques. The impact of passive and active filters, custom power devices such as dynamic voltage restorers (DVRs) and static synchronous compensators (STATCOMs), and grid modernization technologies on power quality is examined. Additionally, this paper… More >

  • Open Access

    ARTICLE

    Mathematical Modeling and Thermal Analysis of Salt Gradient Solar Pond

    Mahesh Kumar1, Rahool Rai2,*, Sudhakar Kumarasamy2,3,4,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1477-1493, 2025, DOI:10.32604/fhmt.2025.067933 - 31 October 2025

    Abstract The increasing demand due to development and advancement in every field of life has caused the depletion of fossil fuels. This depleting fossil fuel reserve throughout the world has enforced to get energy from alternative/renewable sources. One of the economical ways to get energy is through the utilization of solar ponds. In this study, a mathematical model of a salt gradient solar pond under the Islamabad climatic conditions has been analyzed for the first time. The model uses a one-dimensional finite difference explicit method for optimization of different zone thicknesses. The model depicts that NCZ More >

  • Open Access

    REVIEW

    Artificial Neural Networks and Taguchi Methods for Energy Systems Optimization: A Comprehensive Review

    Mir Majid Etghani1, Homayoun Boodaghi2,*

    Energy Engineering, Vol.122, No.11, pp. 4385-4474, 2025, DOI:10.32604/ee.2025.070668 - 27 October 2025

    Abstract Energy system optimization has become crucial for enhancing efficiency and environmental sustainability. This comprehensive review examines the synergistic application of Artificial Neural Networks (ANN) and Taguchi methods in optimizing diverse energy systems. While previous reviews have focused on these methods separately, this paper presents the first integrated analysis of both approaches across multiple energy applications. We systematically analyze their implementation in: Internal combustion engines, Thermal energy storage systems, Solar energy systems, Wind and tidal turbines, Heat exchangers, and hybrid energy systems. Our findings reveal that ANN models consistently achieve prediction accuracies exceeding 90% when compared More > Graphic Abstract

    Artificial Neural Networks and Taguchi Methods for Energy Systems Optimization: A Comprehensive Review

  • Open Access

    ARTICLE

    Energy-Based Approach for Short-Term Voltage Stability Analysis and Assessment

    Wenbiao Li1,2, Zhichong Cao1,*, Zhengyu Li3, Wenbiao Tao3, Cheng Liu1, Yuxin Shi3, Rundong Tian1

    Energy Engineering, Vol.122, No.11, pp. 4733-4754, 2025, DOI:10.32604/ee.2025.068683 - 27 October 2025

    Abstract With the increasing penetration of renewable energy in power systems, grid structures and operational paradigms are undergoing profound transformations. When subjected to disturbances, the interaction between power electronic devices and dynamic loads introduces strongly nonlinear dynamic characteristics in grid voltage responses, posing significant threats to system security and stability. To achieve reliable short-term voltage stability assessment under large-scale renewable integration, this paper innovatively proposes a response-driven online assessment method based on energy function theory. First, energy modeling of system components is performed based on energy function theory, followed by analysis of energy interaction mechanisms during… More >

  • Open Access

    ARTICLE

    Energy Optimization Strategy for Reconfigurable Distribution Network with High Renewable Penetration Based on Bald Eagle Search Algorithm

    Jian Wang, Hui Qi, Lingyi Ji*, Zhengya Tang, Hui Qian

    Energy Engineering, Vol.122, No.11, pp. 4635-4651, 2025, DOI:10.32604/ee.2025.068667 - 27 October 2025

    Abstract This paper proposes a cost-optimal energy management strategy for reconfigurable distribution networks with high penetration of renewable generation. The proposed strategy accounts for renewable generation costs, maintenance and operating expenses of energy storage systems, diesel generator operational costs, typical daily load profiles, and power balance constraints. A penalty term for power backflow is incorporated into the objective function to discourage undesirable reverse flows. The Bald Eagle Search (BES) meta-heuristic is adopted to solve the resulting constrained optimization problem. Numerical simulations under multiple load scenarios demonstrate that the proposed method effectively reduces operating cost while preventing More >

  • Open Access

    ARTICLE

    Configuration and Operation Optimization of Active Distribution Network Based on Wind-Solar-Hydrogen-Storage Integration

    Hongsheng Su1, Wenyao Su1, Yulong Che1,*, Xiping Ma2, Tian Zhao1, Limiao Ren1

    Energy Engineering, Vol.122, No.11, pp. 4777-4797, 2025, DOI:10.32604/ee.2025.068134 - 27 October 2025

    Abstract Aiming at the issues of insufficient carrying capacity, limited flexibility, and weak source-network-load-storage coordination capability in distribution networks under the background of high-proportion new energy integration. This study proposes a bi-level optimization model for ADN integrating hybrid wind-solar-hydrogen-storage systems. First, an electro-hydrogen coupling system framework is constructed, including models for electrolytic hydrogen production, hydrogen storage, and fuel cells. Meanwhile, typical scenarios of wind-solar joint output are developed using Copula functions to characterize the variability of renewable energy generation. Second, a bi-level optimization model for ADN with electrolytic hydrogen production and storage systems is established: the… More >

  • Open Access

    ARTICLE

    Cotton Residue Biomass-Based Electrochemical Sensors: The Relation of Composition and Performance

    Anna Elisa Silva, Eduardo Thiago Formigari, João Pedro Mayer Camacho Araújo, Dagoberto de Oliveira Silva, Jürgen Andreaus, Eduardo Guilherme Cividini Neiva*

    Journal of Renewable Materials, Vol.13, No.10, pp. 1899-1912, 2025, DOI:10.32604/jrm.2025.02025-0130 - 22 October 2025

    Abstract Here, we report a comprehensive study on the characterization of cotton biomass residue, its conversion into carbon-based materials via pyrolysis, and its application as an electrochemical sensor for ascorbic acid (AA). The compositions, morphologies, and structures of the resulting materials were investigated using XRD, FTIR, TGA, SEM, and EDS. Pyrolysis was carried out in an air atmosphere at different temperatures (300°C and 400°C) and durations (1, 60, and 240 min), leading to the transformation of lignocellulosic cotton residue into carbon-based materials embedded with inorganic nanoparticles, including carbonates, sulfates, chlorates, and phosphates of potassium, calcium, and… More > Graphic Abstract

    Cotton Residue Biomass-Based Electrochemical Sensors: The Relation of Composition and Performance

  • Open Access

    REVIEW

    Bamboo Parenchymal Cells: An Untapped Bio-Based Resource for Sustainable Material

    Yao Xia1, Yuxiang Huang1,*, Shifeng Zhang2, Yanglun Yu1

    Journal of Renewable Materials, Vol.13, No.10, pp. 1881-1898, 2025, DOI:10.32604/jrm.2025.02025-0068 - 22 October 2025

    Abstract Bamboo parenchymal cells (PCs) represent an underutilized resource with significant potential as a sustainable and versatile bio-based material. Despite the extensive research on bamboo fibers, PCs, comprising a considerable portion of bamboo, have been largely overlooked. This review examines the multi-scale structure of bamboo PCs, including their microcapsules, multi-wall layers, and pits, which provide the structural foundation for diverse applications. Various physical and chemical isolation methods, impacting the properties of extracted PCs, are also discussed. Notably, the review explores the promising applications of bamboo PCs, highlighting their use as filler materials in formaldehyde-free composites, as More > Graphic Abstract

    Bamboo Parenchymal Cells: An Untapped Bio-Based Resource for Sustainable Material

Displaying 1-10 on page 1 of 207. Per Page