Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (131)
  • Open Access

    ARTICLE

    Optimal Bidding Strategies of Microgrid with Demand Side Management for Economic Emission Dispatch Incorporating Uncertainty and Outage of Renewable Energy Sources

    Mousumi Basu1, Chitralekha Jena2, Baseem Khan3,4,*, Ahmed Ali4

    Energy Engineering, Vol.121, No.4, pp. 849-867, 2024, DOI:10.32604/ee.2024.043294

    Abstract In the restructured electricity market, microgrid (MG), with the incorporation of smart grid technologies, distributed energy resources (DERs), a pumped-storage-hydraulic (PSH) unit, and a demand response program (DRP), is a smarter and more reliable electricity provider. DER consists of gas turbines and renewable energy sources such as photovoltaic systems and wind turbines. Better bidding strategies, prepared by MG operators, decrease the electricity cost and emissions from upstream grid and conventional and renewable energy sources (RES). But it is inefficient due to the very high sporadic characteristics of RES and the very high outage rate. To solve these issues, this study… More >

  • Open Access

    EDITORIAL

    Renewable Biomass as a Platform for Preparing Green Chemistry

    Qiaoguang Li1,*, Puyou Jia2,*, Ying Luo3, Yue Liu4

    Journal of Renewable Materials, Vol.12, No.2, pp. 325-328, 2024, DOI:10.32604/jrm.2023.044083

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Low-Carbon Dispatch of an Integrated Energy System Considering Confidence Intervals for Renewable Energy Generation

    Yan Shi1, Wenjie Li1, Gongbo Fan2,*, Luxi Zhang1, Fengjiu Yang1

    Energy Engineering, Vol.121, No.2, pp. 461-482, 2024, DOI:10.32604/ee.2023.043835

    Abstract Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation, this study focuses on formulating a coordinated strategy involving the carbon capture unit of the integrated energy system and the resources on the load storage side. A scheduling model is devised that takes into account the confidence interval associated with renewable energy generation, with the overarching goal of optimizing the system for low-carbon operation. To begin with, an in-depth analysis is conducted on the temporal energy-shifting attributes and the low-carbon modulation mechanisms exhibited by the source-side… More >

  • Open Access

    ARTICLE

    Folic Acid-Functionalized Nanocrystalline Cellulose as a Renewable and Biocompatible Nanomaterial for Cancer-Targeting Nanoparticles

    Thean Heng Tan1, Najihah Mohd Hashim2, Wageeh Abdulhadi Yehya Dabdawb1, Mochamad Zakki Fahmi3,*, Hwei Voon Lee1,*

    Journal of Renewable Materials, Vol.12, No.1, pp. 29-43, 2024, DOI:10.32604/jrm.2023.043449

    Abstract The study focuses on the development of biocompatible and stable FA-functionalized nanocrystalline cellulose (NCC) as a potential drug delivery system for targeting folate receptor-positive cancer cells. The FA-functionalized NCCs were synthesized through a series of chemical reactions, resulting in nanoparticles with favorable properties for biomedical applications. The microstructural analysis revealed that the functionalized NCCs maintained their rod-shaped morphology and displayed hydrodynamic diameters suitable for evading the mononuclear phagocytic system while being large enough to target tumor tissues. Importantly, these nanoparticles possessed a negative surface charge, enhancing their stability and repelling potential aggregation. The binding specificity of FA-functionalized NCCs to folate… More > Graphic Abstract

    Folic Acid-Functionalized Nanocrystalline Cellulose as a Renewable and Biocompatible Nanomaterial for Cancer-Targeting Nanoparticles

  • Open Access

    ARTICLE

    Nitrogen-Doped Amorphous Carbon Homojunction from Palmyra Sugar as a Renewable Solar Cell

    Budhi Priyanto1,2,*, Imam Khambali1,2, Irma Septi Ardiani2, Khoirotun Nadhiyah2, Anna Zakiyatul Laila2, M. Chasrun Hasani1, Bima Romadhon3, Retno Asih2, Yoyok Cahyono2, Triwikantoro2, Darminto2,*

    Journal of Renewable Materials, Vol.12, No.1, pp. 57-69, 2024, DOI:10.32604/jrm.2023.028619

    Abstract An a-C/a-C:N junction, which used palmyra sugar as the carbon source and ammonium hydroxide (NH4OH) as the dopant source, was successfully deposited on the ITO glass substrate using the nano-spraying method. The current-voltage relationship of the junction was found to be a Schottky-like contact, and therefore the junction shows the characteristic rectifiers. This means the a-C and a-C:N are semiconductors with different types of conduction. Moreover, the samples showed an increase in current and voltage value when exposed to visible light (bright state) compared to the dark condition, thereby, indicating the creation of electron-hole pairs during the exposure. It was… More > Graphic Abstract

    Nitrogen-Doped Amorphous Carbon Homojunction from Palmyra Sugar as a Renewable Solar Cell

  • Open Access

    ARTICLE

    A Novel Non-Isolated Cubic DC-DC Converter with High Voltage Gain for Renewable Energy Power Generation System

    Qin Yao, Yida Zeng*, Qingui Jia

    Energy Engineering, Vol.121, No.1, pp. 221-241, 2024, DOI:10.32604/ee.2023.041028

    Abstract In recent years, switched inductor (SL) technology, switched capacitor (SC) technology, and switched inductor-capacitor (SL-SC) technology have been widely applied to optimize and improve DC-DC boost converters, which can effectively enhance voltage gain and reduce device stress. To address the issue of low output voltage in current renewable energy power generation systems, this study proposes a novel non-isolated cubic high-gain DC-DC converter based on the traditional quadratic DC-DC boost converter by incorporating a SC and a SL-SC unit. Firstly, the proposed converter’s details are elaborated, including its topology structure, operating mode, voltage gain, device stress, and power loss. Subsequently, a… More >

  • Open Access

    ARTICLE

    Assessing the Efficacy of Improved Learning in Hourly Global Irradiance Prediction

    Abdennasser Dahmani1, Yamina Ammi2, Nadjem Bailek3,4,*, Alban Kuriqi5,6, Nadhir Al-Ansari7,*, Salah Hanini2, Ilhami Colak8, Laith Abualigah9,10,11,12,13,14, El-Sayed M. El-kenawy15

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2579-2594, 2023, DOI:10.32604/cmc.2023.040625

    Abstract Increasing global energy consumption has become an urgent problem as natural energy sources such as oil, gas, and uranium are rapidly running out. Research into renewable energy sources such as solar energy is being pursued to counter this. Solar energy is one of the most promising renewable energy sources, as it has the potential to meet the world’s energy needs indefinitely. This study aims to develop and evaluate artificial intelligence (AI) models for predicting hourly global irradiation. The hyperparameters were optimized using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton training algorithm and STATISTICA software. Data from two stations in Algeria with different climatic… More >

  • Open Access

    ARTICLE

    Solar Power Plant Network Packet-Based Anomaly Detection System for Cybersecurity

    Ju Hyeon Lee1, Jiho Shin2, Jung Taek Seo3,*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 757-779, 2023, DOI:10.32604/cmc.2023.039461

    Abstract As energy-related problems continue to emerge, the need for stable energy supplies and issues regarding both environmental and safety require urgent consideration. Renewable energy is becoming increasingly important, with solar power accounting for the most significant proportion of renewables. As the scale and importance of solar energy have increased, cyber threats against solar power plants have also increased. So, we need an anomaly detection system that effectively detects cyber threats to solar power plants. However, as mentioned earlier, the existing solar power plant anomaly detection system monitors only operating information such as power generation, making it difficult to detect cyberattacks.… More >

  • Open Access

    ARTICLE

    Research on Equivalent Modeling Method of AC-DC Power Networks Integrating with Renewable Energy Generation

    Weigang Jin1, Lei Chen2,*, Yifei Li2, Shencong Zheng2, Yuqi Jiang2, Hongkun Chen2

    Energy Engineering, Vol.120, No.11, pp. 2469-2487, 2023, DOI:10.32604/ee.2023.043021

    Abstract Along with the increasing integration of renewable energy generation in AC-DC power networks, investigating the dynamic behaviors of this complex system with a proper equivalent model is significant. This paper presents an equivalent modeling method for the AC-DC power networks with doubly-fed induction generator (DFIG) based wind farms to decrease the simulation scale and computational burden. For the AC-DC power networks, the equivalent modeling strategy in accordance with the physical structure simplification is stated. Regarding the DFIG-based wind farms, the equivalent modeling based on the sequential identification of multi-machine parameters using the improved chaotic cuckoo search algorithm (ICCSA) is conducted.… More >

  • Open Access

    ARTICLE

    CT-NET: A Novel Convolutional Transformer-Based Network for Short-Term Solar Energy Forecasting Using Climatic Information

    Muhammad Munsif1,2, Fath U Min Ullah1,2, Samee Ullah Khan1,2, Noman Khan1,2, Sung Wook Baik1,2,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1751-1773, 2023, DOI:10.32604/csse.2023.038514

    Abstract Photovoltaic (PV) systems are environmentally friendly, generate green energy, and receive support from policies and organizations. However, weather fluctuations make large-scale PV power integration and management challenging despite the economic benefits. Existing PV forecasting techniques (sequential and convolutional neural networks (CNN)) are sensitive to environmental conditions, reducing energy distribution system performance. To handle these issues, this article proposes an efficient, weather-resilient convolutional-transformer-based network (CT-NET) for accurate and efficient PV power forecasting. The network consists of three main modules. First, the acquired PV generation data are forwarded to the pre-processing module for data refinement. Next, to carry out data encoding, a… More >

Displaying 1-10 on page 1 of 131. Per Page