Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (948)
  • Open Access

    ARTICLE

    Diabetes Prediction Using Derived Features and Ensembling of Boosting Classifiers

    R. Rajkamal1,*, Anitha Karthi2, Xiao-Zhi Gao3

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 2013-2033, 2022, DOI:10.32604/cmc.2022.027142 - 18 May 2022

    Abstract Diabetes is increasing commonly in people’s daily life and represents an extraordinary threat to human well-being. Machine Learning (ML) in the healthcare industry has recently made headlines. Several ML models are developed around different datasets for diabetic prediction. It is essential for ML models to predict diabetes accurately. Highly informative features of the dataset are vital to determine the capability factors of the model in the prediction of diabetes. Feature engineering (FE) is the way of taking forward in yielding highly informative features. Pima Indian Diabetes Dataset (PIDD) is used in this work, and the… More >

  • Open Access

    ARTICLE

    Pulmonary Diseases Decision Support System Using Deep Learning Approach

    Yazan Al-Issa1, Ali Mohammad Alqudah2,*, Hiam Alquran3,2, Ahmed Al Issa4

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 311-326, 2022, DOI:10.32604/cmc.2022.025750 - 18 May 2022

    Abstract Pulmonary diseases are common throughout the world, especially in developing countries. These diseases include chronic obstructive pulmonary diseases, pneumonia, asthma, tuberculosis, fibrosis, and recently COVID-19. In general, pulmonary diseases have a similar footprint on chest radiographs which makes them difficult to discriminate even for expert radiologists. In recent years, many image processing techniques and artificial intelligence models have been developed to quickly and accurately diagnose lung diseases. In this paper, the performance of four popular pretrained models (namely VGG16, DenseNet201, DarkNet19, and XceptionNet) in distinguishing between different pulmonary diseases was analyzed. To the best of… More >

  • Open Access

    ARTICLE

    Modified Anam-Net Based Lightweight Deep Learning Model for Retinal Vessel Segmentation

    Syed Irtaza Haider1, Khursheed Aurangzeb2,*, Musaed Alhussein2

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1501-1526, 2022, DOI:10.32604/cmc.2022.025479 - 18 May 2022

    Abstract The accurate segmentation of retinal vessels is a challenging task due to the presence of various pathologies as well as the low-contrast of thin vessels and non-uniform illumination. In recent years, encoder-decoder networks have achieved outstanding performance in retinal vessel segmentation at the cost of high computational complexity. To address the aforementioned challenges and to reduce the computational complexity, we propose a lightweight convolutional neural network (CNN)-based encoder-decoder deep learning model for accurate retinal vessels segmentation. The proposed deep learning model consists of encoder-decoder architecture along with bottleneck layers that consist of depth-wise squeezing, followed… More >

  • Open Access

    ARTICLE

    Semantic Pneumonia Segmentation and Classification for Covid-19 Using Deep Learning Network

    M. M. Lotfy1, Hazem M. El-Bakry2, M. M. Elgayar3, Shaker El-Sappagh4,5, G. Abdallah M. I1, A. A. Soliman1, Kyung Sup Kwak6,*

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1141-1158, 2022, DOI:10.32604/cmc.2022.024193 - 18 May 2022

    Abstract Early detection of the Covid-19 disease is essential due to its higher rate of infection affecting tens of millions of people, and its high number of deaths also by 7%. For that purpose, a proposed model of several stages was developed. The first stage is optimizing the images using dynamic adaptive histogram equalization, performing a semantic segmentation using DeepLabv3Plus, then augmenting the data by flipping it horizontally, rotating it, then flipping it vertically. The second stage builds a custom convolutional neural network model using several pre-trained ImageNet. Finally, the model compares the pre-trained data to More >

  • Open Access

    ARTICLE

    Recurrent Autoencoder Ensembles for Brake Operating Unit Anomaly Detection on Metro Vehicles

    Jaeyong Kang1, Chul-Su Kim2, Jeong Won Kang3, Jeonghwan Gwak1,4,5,6,*

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1-14, 2022, DOI:10.32604/cmc.2022.023641 - 18 May 2022

    Abstract The anomaly detection of the brake operating unit (BOU) in the brake systems on metro vehicle is critical for the safety and reliability of the trains. On the other hand, current periodic inspection and maintenance are unable to detect anomalies in an early stage. Also, building an accurate and stable system for detecting anomalies is extremely difficult. Therefore, we present an efficient model that use an ensemble of recurrent autoencoders to accurately detect the BOU abnormalities of metro trains. This is the first proposal to employ an ensemble deep learning technique to detect BOU abnormalities… More >

  • Open Access

    VIEWPOINT

    Dancing to a somewhat different rhythm: Cell migration along the natural basement membrane

    SHELDON R. GORDON*

    BIOCELL, Vol.46, No.9, pp. 2059-2063, 2022, DOI:10.32604/biocell.2022.019873 - 18 May 2022

    Abstract Much of our understanding of the events which underlie cell migration has been derived from studies of cells in tissue culture. One of the components that mediates this process is the dynamic actin-based microfilament system that can reorganize itself into so-called stress fibers that are considered essential components for cell motility. In contrast, relatively few studies have investigated cell movement along an extracellular matrix (ECM) which is known to influence both cellular organization and behavior. This opinion/viewpoint article briefly reviews cell migration during corneal endothelial wound repair along the tissue’s natural basement membrane, Descemet’s membrane. More >

  • Open Access

    ARTICLE

    ENSOCOM: Ensemble of Multi-Output Neural Network’s Components for Multi-Label Classification

    Khudran M. Alzhrani*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5459-5479, 2022, DOI:10.32604/cmc.2022.028512 - 21 April 2022

    Abstract Multitasking and multioutput neural networks models jointly learn related classification tasks from a shared structure. Hard parameters sharing is a multitasking approach that shares hidden layers between multiple task-specific outputs. The output layers’ weights are essential in transforming aggregated neurons outputs into tasks labels. This paper redirects the multioutput network research to prove that the ensemble of output layers prediction can improve network performance in classifying multi-label classification tasks. The network’s output layers initialized with different weights simulate multiple semi-independent classifiers that can make non-identical label sets predictions for the same instance. The ensemble of… More >

  • Open Access

    ARTICLE

    Handling Big Data in Relational Database Management Systems

    Kamal ElDahshan1, Eman Selim2, Ahmed Ismail Ebada2, Mohamed Abouhawwash3,4, Yunyoung Nam5,*, Gamal Behery2

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5149-5164, 2022, DOI:10.32604/cmc.2022.028326 - 21 April 2022

    Abstract Currently, relational database management systems (RDBMSs) face different challenges in application development due to the massive growth of unstructured and semi-structured data. This introduced new DBMS categories, known as not only structured query language (NoSQL) DBMSs, which do not adhere to the relational model. The migration from relational databases to NoSQL databases is challenging due to the data complexity. This study aims to enhance the storage performance of RDBMSs in handling a variety of data. The paper presents two approaches. The first approach proposes a convenient representation of unstructured data storage. Several extensive experiments were More >

  • Open Access

    ARTICLE

    Iterative Semi-Supervised Learning Using Softmax Probability

    Heewon Chung, Jinseok Lee*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5607-5628, 2022, DOI:10.32604/cmc.2022.028154 - 21 April 2022

    Abstract For the classification problem in practice, one of the challenging issues is to obtain enough labeled data for training. Moreover, even if such labeled data has been sufficiently accumulated, most datasets often exhibit long-tailed distribution with heavy class imbalance, which results in a biased model towards a majority class. To alleviate such class imbalance, semi-supervised learning methods using additional unlabeled data have been considered. However, as a matter of course, the accuracy is much lower than that from supervised learning. In this study, under the assumption that additional unlabeled data is available, we propose the More >

  • Open Access

    ARTICLE

    A Hybrid Grey DEMATEL and PLS-SEM Model to Investigate COVID-19 Vaccination Intention

    Phi-Hung Nguyen1,2,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5059-5078, 2022, DOI:10.32604/cmc.2022.027630 - 21 April 2022

    Abstract The main objective of this study is to comprehensively investigate individuals’ vaccination intention against COVID-19 during the second wave of COVID-19 spread in Vietnam using a novel hybrid approach. First, the Decision-Making Trial and Evaluation Laboratory based on Grey Theory (DEMATEL-G) was employed to explore the critical factors of vaccination intention among individuals. Second, Partial Least Squares-Structural Equation Modeling (PLS-SEM) was applied to test the hypotheses of individual behavioral intention to get the vaccine to prevent the outbreak of COVID-19. A panel of 661 valid respondents was collected from June 2021 to July 2021, and… More >

Displaying 521-530 on page 53 of 948. Per Page