Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (366)
  • Open Access

    ARTICLE

    Empowering Diagnosis: Cutting-Edge Segmentation and Classification in Lung Cancer Analysis

    Iftikhar Naseer1,2, Tehreem Masood1,2, Sheeraz Akram3,*, Zulfiqar Ali4, Awais Ahmad3, Shafiq Ur Rehman3, Arfan Jaffar1,2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4963-4977, 2024, DOI:10.32604/cmc.2024.050204 - 20 June 2024

    Abstract Lung cancer is a leading cause of global mortality rates. Early detection of pulmonary tumors can significantly enhance the survival rate of patients. Recently, various Computer-Aided Diagnostic (CAD) methods have been developed to enhance the detection of pulmonary nodules with high accuracy. Nevertheless, the existing methodologies cannot obtain a high level of specificity and sensitivity. The present study introduces a novel model for Lung Cancer Segmentation and Classification (LCSC), which incorporates two improved architectures, namely the improved U-Net architecture and the improved AlexNet architecture. The LCSC model comprises two distinct stages. The first stage involves… More >

  • Open Access

    ARTICLE

    An Improved UNet Lightweight Network for Semantic Segmentation of Weed Images in Corn Fields

    Yu Zuo1, Wenwen Li2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4413-4431, 2024, DOI:10.32604/cmc.2024.049805 - 20 June 2024

    Abstract In cornfields, factors such as the similarity between corn seedlings and weeds and the blurring of plant edge details pose challenges to corn and weed segmentation. In addition, remote areas such as farmland are usually constrained by limited computational resources and limited collected data. Therefore, it becomes necessary to lighten the model to better adapt to complex cornfield scene, and make full use of the limited data information. In this paper, we propose an improved image segmentation algorithm based on unet. Firstly, the inverted residual structure is introduced into the contraction path to reduce the… More >

  • Open Access

    ARTICLE

    CrossLinkNet: An Explainable and Trustworthy AI Framework for Whole-Slide Images Segmentation

    Peng Xiao1, Qi Zhong2, Jingxue Chen1, Dongyuan Wu1, Zhen Qin1, Erqiang Zhou1,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4703-4724, 2024, DOI:10.32604/cmc.2024.049791 - 20 June 2024

    Abstract In the intelligent medical diagnosis area, Artificial Intelligence (AI)’s trustworthiness, reliability, and interpretability are critical, especially in cancer diagnosis. Traditional neural networks, while excellent at processing natural images, often lack interpretability and adaptability when processing high-resolution digital pathological images. This limitation is particularly evident in pathological diagnosis, which is the gold standard of cancer diagnosis and relies on a pathologist’s careful examination and analysis of digital pathological slides to identify the features and progression of the disease. Therefore, the integration of interpretable AI into smart medical diagnosis is not only an inevitable technological trend but… More >

  • Open Access

    ARTICLE

    SGT-Net: A Transformer-Based Stratified Graph Convolutional Network for 3D Point Cloud Semantic Segmentation

    Suyi Liu1,*, Jianning Chi1, Chengdong Wu1, Fang Xu2,3,4, Xiaosheng Yu1

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4471-4489, 2024, DOI:10.32604/cmc.2024.049450 - 20 June 2024

    Abstract In recent years, semantic segmentation on 3D point cloud data has attracted much attention. Unlike 2D images where pixels distribute regularly in the image domain, 3D point clouds in non-Euclidean space are irregular and inherently sparse. Therefore, it is very difficult to extract long-range contexts and effectively aggregate local features for semantic segmentation in 3D point cloud space. Most current methods either focus on local feature aggregation or long-range context dependency, but fail to directly establish a global-local feature extractor to complete the point cloud semantic segmentation tasks. In this paper, we propose a Transformer-based… More >

  • Open Access

    ARTICLE

    MCIF-Transformer Mask RCNN: Multi-Branch Cross-Scale Interactive Feature Fusion Transformer Model for PET/CT Lung Tumor Instance Segmentation

    Huiling Lu1,*, Tao Zhou2,3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4371-4393, 2024, DOI:10.32604/cmc.2024.047827 - 20 June 2024

    Abstract The precise detection and segmentation of tumor lesions are very important for lung cancer computer-aided diagnosis. However, in PET/CT (Positron Emission Tomography/Computed Tomography) lung images, the lesion shapes are complex, the edges are blurred, and the sample numbers are unbalanced. To solve these problems, this paper proposes a Multi-branch Cross-scale Interactive Feature fusion Transformer model (MCIF-Transformer Mask RCNN) for PET/CT lung tumor instance segmentation, The main innovative works of this paper are as follows: Firstly, the ResNet-Transformer backbone network is used to extract global feature and local feature in lung images. The pixel dependence relationship… More >

  • Open Access

    CORRECTION

    Correction: Diabetic Retinopathy Diagnosis Using Interval Neutrosophic Segmentation with Deep Learning Model

    V. Thanikachalam1,*, M. G. Kavitha2, V. Sivamurugan1

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 857-858, 2024, DOI:10.32604/csse.2024.052484 - 20 May 2024

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Image Segmentation-P300 Selector: A Brain–Computer Interface System for Target Selection

    Hang Sun, Changsheng Li*, He Zhang

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2505-2522, 2024, DOI:10.32604/cmc.2024.049898 - 15 May 2024

    Abstract Brain–computer interface (BCI) systems, such as the P300 speller, enable patients to express intentions without necessitating extensive training. However, the complexity of operational instructions and the slow pace of character spelling pose challenges for some patients. In this paper, an image segmentation P300 selector based on YOLOv7-mask and DeepSORT is proposed. The proposed system utilizes a camera to capture real-world objects for classification and tracking. By applying predefined stimulation rules and object-specific masks, the proposed system triggers stimuli associated with the objects displayed on the screen, inducing the generation of P300 signals in the patient’s… More >

  • Open Access

    ARTICLE

    Low-Brightness Object Recognition Based on Deep Learning

    Shu-Yin Chiang*, Ting-Yu Lin

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1757-1773, 2024, DOI:10.32604/cmc.2024.049477 - 15 May 2024

    Abstract This research focuses on addressing the challenges associated with image detection in low-light environments, particularly by applying artificial intelligence techniques to machine vision and object recognition systems. The primary goal is to tackle issues related to recognizing objects with low brightness levels. In this study, the Intel RealSense Lidar Camera L515 is used to simultaneously capture color information and 16-bit depth information images. The detection scenarios are categorized into normal brightness and low brightness situations. When the system determines a normal brightness environment, normal brightness images are recognized using deep learning methods. In low-brightness situations,… More >

  • Open Access

    ARTICLE

    Improving the Segmentation of Arabic Handwriting Using Ligature Detection Technique

    Husam Ahmad Al Hamad*, Mohammad Shehab*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2015-2034, 2024, DOI:10.32604/cmc.2024.048527 - 15 May 2024

    Abstract Recognizing handwritten characters remains a critical and formidable challenge within the realm of computer vision. Although considerable strides have been made in enhancing English handwritten character recognition through various techniques, deciphering Arabic handwritten characters is particularly intricate. This complexity arises from the diverse array of writing styles among individuals, coupled with the various shapes that a single character can take when positioned differently within document images, rendering the task more perplexing. In this study, a novel segmentation method for Arabic handwritten scripts is suggested. This work aims to locate the local minima of the vertical… More >

  • Open Access

    ARTICLE

    A Novel Approach to Breast Tumor Detection: Enhanced Speckle Reduction and Hybrid Classification in Ultrasound Imaging

    K. Umapathi1,*, S. Shobana1, Anand Nayyar2, Judith Justin3, R. Vanithamani3, Miguel Villagómez Galindo4, Mushtaq Ahmad Ansari5, Hitesh Panchal6,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1875-1901, 2024, DOI:10.32604/cmc.2024.047961 - 15 May 2024

    Abstract Breast cancer detection heavily relies on medical imaging, particularly ultrasound, for early diagnosis and effective treatment. This research addresses the challenges associated with computer-aided diagnosis (CAD) of breast cancer from ultrasound images. The primary challenge is accurately distinguishing between malignant and benign tumors, complicated by factors such as speckle noise, variable image quality, and the need for precise segmentation and classification. The main objective of the research paper is to develop an advanced methodology for breast ultrasound image classification, focusing on speckle noise reduction, precise segmentation, feature extraction, and machine learning-based classification. A unique approach… More >

Displaying 21-30 on page 3 of 366. Per Page