Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (37)
  • Open Access

    ARTICLE

    Dual-Channel Attention Deep Bidirectional Long Short Term Memory for Enhanced Malware Detection and Risk Mitigation

    Madini O. Alassafi, Syed Hamid Hasan*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2627-2645, 2025, DOI:10.32604/cmes.2025.064926 - 31 August 2025

    Abstract Over the past few years, Malware attacks have become more and more widespread, posing threats to digital assets throughout the world. Although numerous methods have been developed to detect malicious attacks, these malware detection techniques need to be more efficient in detecting new and progressively sophisticated variants of malware. Therefore, the development of more advanced and accurate techniques is necessary for malware detection. This paper introduces a comprehensive Dual-Channel Attention Deep Bidirectional Long Short-Term Memory (DCA-DBiLSTM) model for malware detection and risk mitigation. The Dual Channel Attention (DCA) mechanism improves the model’s capability to concentrate… More >

  • Open Access

    ARTICLE

    A Power Battery Fault Diagnosis Method Based on Long-Short Term Memory-Back Propagation

    Yuheng Yin, Jiahao Song*, Minghui Yang

    Energy Engineering, Vol.122, No.2, pp. 709-731, 2025, DOI:10.32604/ee.2024.059021 - 31 January 2025

    Abstract The lithium battery is an essential component of electric cars; prompt and accurate problem detection is vital in guaranteeing electric cars’ safe and dependable functioning and addressing the limitations of Back Propagation (BP) neural networks in terms of vanishing gradients and inability to effectively capture dependencies in time series, and the limitations of Long-Short Term Memory (LSTM) neural network models in terms of risk of overfitting. A method based on LSTM-BP is put forward for power battery fault diagnosis to improve the accuracy of lithium battery fault diagnosis. First, a lithium battery model is constructed… More > Graphic Abstract

    A Power Battery Fault Diagnosis Method Based on Long-Short Term Memory-Back Propagation

  • Open Access

    ARTICLE

    A Combined Method of Temporal Convolutional Mechanism and Wavelet Decomposition for State Estimation of Photovoltaic Power Plants

    Shaoxiong Wu1, Ruoxin Li1, Xiaofeng Tao1, Hailong Wu1,*, Ping Miao1, Yang Lu1, Yanyan Lu1, Qi Liu2, Li Pan2

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3063-3077, 2024, DOI:10.32604/cmc.2024.055381 - 18 November 2024

    Abstract Time series prediction has always been an important problem in the field of machine learning. Among them, power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulating their control strategies. Traditional power load forecasting often has poor feature extraction performance for long time series. In this paper, a new deep learning framework Residual Stacked Temporal Long Short-Term Memory (RST-LSTM) is proposed, which combines wavelet decomposition and time convolutional memory network to solve the problem of feature extraction for long sequences. The network framework of RST-LSTM consists of two More >

  • Open Access

    ARTICLE

    Fusion of Spiral Convolution-LSTM for Intrusion Detection Modeling

    Fei Wang, Zhen Dong*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2315-2329, 2024, DOI:10.32604/cmc.2024.048443 - 15 May 2024

    Abstract Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models, SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model. The dataset is first preprocessed using solo thermal encoding and normalization functions. Then the spiral convolution-Long Short-Term Memory Network model is constructed, which consists of spiral convolution, a two-layer long short-term memory network, and a classifier. It is shown through experiments that the model is characterized by high accuracy, small model computation, and fast convergence speed relative to previous deep learning models. The model More >

  • Open Access

    ARTICLE

    Soil NOx Emission Prediction via Recurrent Neural Networks

    Zhaoan Wang1, Shaoping Xiao1,*, Cheryl Reuben2, Qiyu Wang2, Jun Wang2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 285-297, 2023, DOI:10.32604/cmc.2023.044366 - 31 October 2023

    Abstract This paper presents designing sequence-to-sequence recurrent neural network (RNN) architectures for a novel study to predict soil NOx emissions, driven by the imperative of understanding and mitigating environmental impact. The study utilizes data collected by the Environmental Protection Agency (EPA) to develop two distinct RNN predictive models: one built upon the long-short term memory (LSTM) and the other utilizing the gated recurrent unit (GRU). These models are fed with a combination of historical and anticipated air temperature, air moisture, and NOx emissions as inputs to forecast future NOx emissions. Both LSTM and GRU models can… More >

  • Open Access

    ARTICLE

    Building Indoor Dangerous Behavior Recognition Based on LSTM-GCN with Attention Mechanism

    Qingyue Zhao1, Qiaoyu Gu2, Zhijun Gao3,*, Shipian Shao1, Xinyuan Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1773-1788, 2023, DOI:10.32604/cmes.2023.027500 - 26 June 2023

    Abstract Building indoor dangerous behavior recognition is a specific application in the field of abnormal human recognition. A human dangerous behavior recognition method based on LSTM-GCN with attention mechanism (GLA) model was proposed aiming at the problem that the existing human skeleton-based action recognition methods cannot fully extract the temporal and spatial features. The network connects GCN and LSTM network in series, and inputs the skeleton sequence extracted by GCN that contains spatial information into the LSTM layer for time sequence feature extraction, which fully excavates the temporal and spatial features of the skeleton sequence. Finally, More >

  • Open Access

    ARTICLE

    Short-Term Wind Power Prediction Based on Combinatorial Neural Networks

    Tusongjiang Kari1, Sun Guoliang2, Lei Kesong1, Ma Xiaojing1,*, Wu Xian1

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1437-1452, 2023, DOI:10.32604/iasc.2023.037012 - 21 June 2023

    Abstract Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation. Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections. For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model, the short-term prediction of wind power based on a combined neural network is proposed. First, the Bi-directional Long Short Term Memory (BiLSTM) network prediction model is constructed, and the bi-directional nature of the BiLSTM network is used… More >

  • Open Access

    ARTICLE

    MSCNN-LSTM Model for Predicting Return Loss of the UHF Antenna in HF-UHF RFID Tag Antenna

    Zhao Yang1, Yuan Zhang1, Lei Zhu2,*, Lei Huang1, Fangyu Hu3, Yanping Du1, Xiaowei Li1

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2889-2904, 2023, DOI:10.32604/cmc.2023.037297 - 31 March 2023

    Abstract High-frequency (HF) and ultrahigh-frequency (UHF) dual-band radio frequency identification (RFID) tags with both near-field and far-field communication can meet different application scenarios. However, it is time-consuming to calculate the return loss of a UHF antenna in a dual-band tag antenna using electromagnetic (EM) simulators. To overcome this, the present work proposes a model of a multi-scale convolutional neural network stacked with long and short-term memory (MSCNN-LSTM) for predicting the return loss of UHF antennas instead of EM simulators. In the proposed MSCNN-LSTM, the MSCNN has three branches, which include three convolution layers with different kernel… More >

  • Open Access

    ARTICLE

    An Improved Time Feedforward Connections Recurrent Neural Networks

    Jin Wang1,2, Yongsong Zou1, Se-Jung Lim3,*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2743-2755, 2023, DOI:10.32604/iasc.2023.033869 - 15 March 2023

    Abstract Recurrent Neural Networks (RNNs) have been widely applied to deal with temporal problems, such as flood forecasting and financial data processing. On the one hand, traditional RNNs models amplify the gradient issue due to the strict time serial dependency, making it difficult to realize a long-term memory function. On the other hand, RNNs cells are highly complex, which will significantly increase computational complexity and cause waste of computational resources during model training. In this paper, an improved Time Feedforward Connections Recurrent Neural Networks (TFC-RNNs) model was first proposed to address the gradient issue. A parallel… More >

  • Open Access

    ARTICLE

    Enhanced Deep Learning for Detecting Suspicious Fall Event in Video Data

    Madhuri Agrawal*, Shikha Agrawal

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2653-2667, 2023, DOI:10.32604/iasc.2023.033493 - 15 March 2023

    Abstract

    Suspicious fall events are particularly significant hazards for the safety of patients and elders. Recently, suspicious fall event detection has become a robust research case in real-time monitoring. This paper aims to detect suspicious fall events during video monitoring of multiple people in different moving backgrounds in an indoor environment; it is further proposed to use a deep learning method known as Long Short Term Memory (LSTM) by introducing visual attention-guided mechanism along with a bi-directional LSTM model. This method contributes essential information on the temporal and spatial locations of ‘suspicious fall’ events in learning the

    More >

Displaying 1-10 on page 1 of 37. Per Page