Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (92)
  • Open Access

    ARTICLE

    Quantum Genetic Algorithm Based Ensemble Learning for Detection of Atrial Fibrillation Using ECG Signals

    Yazeed Alkhrijah1, Marwa Fahim2, Syed Muhammad Usman3, Qasim Mehmood3, Shehzad Khalid4,5,*, Mohamad A. Alawad1, Haya Aldossary6

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2339-2355, 2025, DOI:10.32604/cmes.2025.071512 - 26 November 2025

    Abstract Atrial Fibrillation (AF) is a cardiac disorder characterized by irregular heart rhythms, typically diagnosed using Electrocardiogram (ECG) signals. In remote regions with limited healthcare personnel, automated AF detection is extremely important. Although recent studies have explored various machine learning and deep learning approaches, challenges such as signal noise and subtle variations between AF and other cardiac rhythms continue to hinder accurate classification. In this study, we propose a novel framework that integrates robust preprocessing, comprehensive feature extraction, and an ensemble classification strategy. In the first step, ECG signals are divided into equal-sized segments using a… More >

  • Open Access

    ARTICLE

    Memory-Fused Dual-Stream Fault Diagnosis Network Based on Transformer Vibration Signals

    Mingxing Wu1, Chengzhen Li1, Xinyan Feng1, Fei Chen2, Yingchun Feng1, Huihui Song1, Wenyu Wang3, Faye Zhang3,*

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1473-1487, 2025, DOI:10.32604/sdhm.2025.069811 - 17 November 2025

    Abstract As a core component of power systems, the operational status of transformers directly affects grid stability. To address the problem of “domain shift” in cross-domain fault diagnosis, this paper proposes a memory-enhanced dual-stream network (MemFuse-DSN). The method reconstructs the feature space by selecting and enhancing multi-source domain samples based on similarity metrics. An adaptive weighted dual-stream architecture is designed, integrating gradient reversal and orthogonality constraints to achieve efficient feature alignment. In addition, a novel dual dynamic memory module is introduced: the task memory bank is used to store high-confidence class prototype information, and adopts an More >

  • Open Access

    ARTICLE

    Identification of Cardiac Risk Factors from ECG Signals Using Residual Neural Networks

    Divya Arivalagan, Vignesh Ochathevan*, Rubankumar Dhanasekaran

    Congenital Heart Disease, Vol.20, No.4, pp. 477-501, 2025, DOI:10.32604/chd.2025.070372 - 18 September 2025

    Abstract Background: The accurate identification of cardiac abnormalities is essential for proper diagnosis and effective treatment of cardiovascular diseases. Method: This work introduces an advanced methodology for detecting cardiac abnormalities and estimating electrocardiographic age (ECG Age) using sophisticated signal processing and deep learning techniques. This study looks at six main heart conditions found in 12-lead electrocardiogram (ECG) data. It addresses important issues like class imbalances, missing lead scenarios, and model generalizations. A modified residual neural network (ResNet) architecture was developed to enhance the detection of cardiac abnormalities. Results: The proposed ResNet demonst rated superior performance when compared with… More > Graphic Abstract

    Identification of Cardiac Risk Factors from ECG Signals Using Residual Neural Networks

  • Open Access

    ARTICLE

    Greylag Goose Optimization and Deep Learning-Based Electrohysterogram Signal Analysis for Preterm Birth Risk Prediction

    Anis Ben Ghorbal1,*, Azedine Grine1, Marwa M. Eid2,3,*, El-Sayed M. El-Kenawy4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2001-2028, 2025, DOI:10.32604/cmes.2025.068212 - 31 August 2025

    Abstract Preterm birth remains a leading cause of neonatal complications and highlights the need for early and accurate prediction techniques to improve both fetal and maternal health outcomes. This study introduces a hybrid approach integrating Long Short-Term Memory (LSTM) networks with the Hybrid Greylag Goose and Particle Swarm Optimization (GGPSO) algorithm to optimize preterm birth classification using Electrohysterogram signals. The dataset consists of 58 samples of 1000-second-long Electrohysterogram recordings, capturing key physiological features such as contraction patterns, entropy, and statistical variations. Statistical analysis and feature selection methods are applied to identify the most relevant predictors and More > Graphic Abstract

    Greylag Goose Optimization and Deep Learning-Based Electrohysterogram Signal Analysis for Preterm Birth Risk Prediction

  • Open Access

    ARTICLE

    Cardiovascular Sound Classification Using Neural Architectures and Deep Learning for Advancing Cardiac Wellness

    Deepak Mahto1, Sudhakar Kumar1, Sunil K. Singh1, Amit Chhabra1, Irfan Ahmad Khan2, Varsha Arya3,4, Wadee Alhalabi5, Brij B. Gupta6,7,8,9,*, Bassma Saleh Alsulami10

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3743-3767, 2025, DOI:10.32604/cmes.2025.063427 - 30 June 2025

    Abstract Cardiovascular diseases (CVDs) remain one of the foremost causes of death globally; hence, the need for several must-have, advanced automated diagnostic solutions towards early detection and intervention. Traditional auscultation of cardiovascular sounds is heavily reliant on clinical expertise and subject to high variability. To counter this limitation, this study proposes an AI-driven classification system for cardiovascular sounds whereby deep learning techniques are engaged to automate the detection of an abnormal heartbeat. We employ FastAI vision-learner-based convolutional neural networks (CNNs) that include ResNet, DenseNet, VGG, ConvNeXt, SqueezeNet, and AlexNet to classify heart sound recordings. Instead of… More >

  • Open Access

    ARTICLE

    Differential Gene Expression and Metabolic Changes in Soybean Leaves Triggered by Caterpillar Chewing Sound Signals

    Lucas Leal Lima1, Angélica Souza Gouveia1, Analice Martins Duarte1, Filipe Schitini Salgado2, Nathália Silva Oliveira1, Monique da Silva Bonjour1, Iana Pedro da Silva Quadros1, Maria Goreti Almeida Oliveira1, Flavia Maria Silva Carmo2, Elizabeth Pacheco Batista Fontes1, Humberto Josué de Oliveira Ramos1,3,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.6, pp. 1787-1810, 2025, DOI:10.32604/phyton.2025.064068 - 27 June 2025

    Abstract Sound contains mechanical signals that can promote physiological and biochemical changes in plants. Insects produce different sounds in the environment, which may be relevant to plant behavior. Thus, we evaluated whether signaling cascades are regulated differently by ecological sounds and whether they trigger molecular responses following those produced by herbivorous insects. Soybean plants were treated with two different sounds: chewing herbivore and forest ambient. The responses were markedly distinct, indicating that sound signals may also trigger specific cascades. Enzymes involved in oxidative metabolism were responsive to both sounds, while salicylic acid (SA) was responsive only… More >

  • Open Access

    REVIEW

    A Review of Deep Learning for Biomedical Signals: Current Applications, Advancements, Future Prospects, Interpretation, and Challenges

    Ali Mohammad Alqudah1, Zahra Moussavi1,2,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 3753-3841, 2025, DOI:10.32604/cmc.2025.063643 - 19 May 2025

    Abstract This review presents a comprehensive technical analysis of deep learning (DL) methodologies in biomedical signal processing, focusing on architectural innovations, experimental validation, and evaluation frameworks. We systematically evaluate key deep learning architectures including convolutional neural networks (CNNs), recurrent neural networks (RNNs), transformer-based models, and hybrid systems across critical tasks such as arrhythmia classification, seizure detection, and anomaly segmentation. The study dissects preprocessing techniques (e.g., wavelet denoising, spectral normalization) and feature extraction strategies (time-frequency analysis, attention mechanisms), demonstrating their impact on model accuracy, noise robustness, and computational efficiency. Experimental results underscore the superiority of deep learning… More >

  • Open Access

    ARTICLE

    Hardware-Enabled Key Generation in Industry 4.0 Cryptosystems through Analog Hyperchaotic Signals

    Borja Bordel Sánchez1,*, Fernando Rodríguez-Sela1, Ramón Alcarria2, Tomás Robles1

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 1821-1853, 2025, DOI:10.32604/cmc.2025.059012 - 16 April 2025

    Abstract The Industry 4.0 revolution is characterized by distributed infrastructures where data must be continuously communicated between hardware nodes and cloud servers. Specific lightweight cryptosystems are needed to protect those links, as the hardware node tends to be resource-constrained. Then Pseudo Random Number Generators are employed to produce random keys, whose final behavior depends on the initial seed. To guarantee good mathematical behavior, most key generators need an unpredictable voltage signal as input. However, physical signals evolve slowly and have a significant autocorrelation, so they do not have enough entropy to support high-randomness seeds. Then, electronic… More >

  • Open Access

    ARTICLE

    HQNN-SFOP: Hybrid Quantum Neural Networks with Signal Feature Overlay Projection for Drone Detection Using Radar Return Signals—A Simulation

    Wenxia Wang, Jinchen Xu, Xiaodong Ding, Zhihui Song, Yizhen Huang, Xin Zhou, Zheng Shan*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1363-1390, 2024, DOI:10.32604/cmc.2024.054055 - 15 October 2024

    Abstract With the wide application of drone technology, there is an increasing demand for the detection of radar return signals from drones. Existing detection methods mainly rely on time-frequency domain feature extraction and classical machine learning algorithms for image recognition. This method suffers from the problem of large dimensionality of image features, which leads to large input data size and noise affecting learning. Therefore, this paper proposes to extract signal time-domain statistical features for radar return signals from drones and reduce the feature dimension from 512 × 4 to 16 dimensions. However, the downscaled feature data… More >

  • Open Access

    ARTICLE

    Automatic Extraction of Medical Latent Variables from ECG Signals Utilizing a Mutual Information-Based Technique and Capsular Neural Networks for Arrhythmia Detection

    Abbas Ali Hassan, Fardin Abdali-Mohammadi*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 971-983, 2024, DOI:10.32604/cmc.2024.053817 - 15 October 2024

    Abstract From a medical perspective, the 12 leads of the heart in an electrocardiogram (ECG) signal have functional dependencies with each other. Therefore, all these leads report different aspects of an arrhythmia. Their differences lie in the level of highlighting and displaying information about that arrhythmia. For example, although all leads show traces of atrial excitation, this function is more evident in lead II than in any other lead. In this article, a new model was proposed using ECG functional and structural dependencies between heart leads. In the prescreening stage, the ECG signals are segmented from… More >

Displaying 1-10 on page 1 of 92. Per Page