Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (129)
  • Open Access

    ARTICLE

    Radiation Effect on Heat Transfer Analysis of MHD Flow of Upper Convected Maxwell Fluid between a Porous and a Moving Plate

    P. Pai Nityanand, B. Devaki, G. Bhat Pareekshith, V. S. Sampath Kumar*

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 655-673, 2024, DOI:10.32604/fhmt.2024.050237 - 20 May 2024

    Abstract The study in this manuscript aims to analyse the impact of thermal radiation on the two-dimensional magnetohydrodynamic flow of upper convected Maxwell (UCM) fluid between parallel plates. The lower plate is porous and stationary, while the top plate is impermeable and moving. The equations that describe the flow are transformed into non-linear ordinary differential equations with boundary conditions by employing similarity transformations. The Homotopy Perturbation Method (HPM) is then employed to approach the obtained non-linear ordinary differential equations and get an approximate analytical solution. The analysis includes plotting the velocity profile for different Reynolds number… More >

  • Open Access

    ARTICLE

    Cross-Modal Consistency with Aesthetic Similarity for Multimodal False Information Detection

    Weijian Fan1,*, Ziwei Shi2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2723-2741, 2024, DOI:10.32604/cmc.2024.050344 - 15 May 2024

    Abstract With the explosive growth of false information on social media platforms, the automatic detection of multimodal false information has received increasing attention. Recent research has significantly contributed to multimodal information exchange and fusion, with many methods attempting to integrate unimodal features to generate multimodal news representations. However, they still need to fully explore the hierarchical and complex semantic correlations between different modal contents, severely limiting their performance detecting multimodal false information. This work proposes a two-stage detection framework for multimodal false information detection, called ASMFD, which is based on image aesthetic similarity to segment and… More >

  • Open Access

    ARTICLE

    Multimodal Social Media Fake News Detection Based on Similarity Inference and Adversarial Networks

    Fangfang Shan1,2,*, Huifang Sun1,2, Mengyi Wang1,2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 581-605, 2024, DOI:10.32604/cmc.2024.046202 - 25 April 2024

    Abstract As social networks become increasingly complex, contemporary fake news often includes textual descriptions of events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely to create a misleading perception among users. While early research primarily focused on text-based features for fake news detection mechanisms, there has been relatively limited exploration of learning shared representations in multimodal (text and visual) contexts. To address these limitations, this paper introduces a multimodal model for detecting fake news, which relies on similarity reasoning and adversarial networks. The model employs Bidirectional Encoder Representation from Transformers… More >

  • Open Access

    ARTICLE

    Machine-Learning Based Packet Switching Method for Providing Stable High-Quality Video Streaming in Multi-Stream Transmission

    Yumin Jo1, Jongho Paik2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4153-4176, 2024, DOI:10.32604/cmc.2024.047046 - 26 March 2024

    Abstract Broadcasting gateway equipment generally uses a method of simply switching to a spare input stream when a failure occurs in a main input stream. However, when the transmission environment is unstable, problems such as reduction in the lifespan of equipment due to frequent switching and interruption, delay, and stoppage of services may occur. Therefore, applying a machine learning (ML) method, which is possible to automatically judge and classify network-related service anomaly, and switch multi-input signals without dropping or changing signals by predicting or quickly determining the time of error occurrence for smooth stream switching when… More >

  • Open Access

    ARTICLE

    Cross-Project Software Defect Prediction Based on SMOTE and Deep Canonical Correlation Analysis

    Xin Fan1,2, Shuqing Zhang1,2,*, Kaisheng Wu1,2, Wei Zheng1,2, Yu Ge1,2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1687-1711, 2024, DOI:10.32604/cmc.2023.046187 - 27 February 2024

    Abstract Cross-Project Defect Prediction (CPDP) is a method that utilizes historical data from other source projects to train predictive models for defect prediction in the target project. However, existing CPDP methods only consider linear correlations between features (indicators) of the source and target projects. These models are not capable of evaluating non-linear correlations between features when they exist, for example, when there are differences in data distributions between the source and target projects. As a result, the performance of such CPDP models is compromised. In this paper, this paper proposes a novel CPDP method based on… More >

  • Open Access

    ARTICLE

    Two-Way Neural Network Performance Prediction Model Based on Knowledge Evolution and Individual Similarity

    Xinzheng Wang1,2,*, Bing Guo1, Yan Shen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1183-1206, 2024, DOI:10.32604/cmes.2023.029552 - 17 November 2023

    Abstract Predicting students’ academic achievements is an essential issue in education, which can benefit many stakeholders, for instance, students, teachers, managers, etc. Compared with online courses such as MOOCs, students’ academic-related data in the face-to-face physical teaching environment is usually sparsity, and the sample size is relatively small. It makes building models to predict students’ performance accurately in such an environment even more challenging. This paper proposes a Two-Way Neural Network (TWNN) model based on the bidirectional recurrent neural network and graph neural network to predict students’ next semester’s course performance using only their previous course More > Graphic Abstract

    Two-Way Neural Network Performance Prediction Model Based on Knowledge Evolution and Individual Similarity

  • Open Access

    ARTICLE

    Maximizing Influence in Temporal Social Networks: A Node Feature-Aware Voting Algorithm

    Wenlong Zhu1,2,*, Yu Miao1, Shuangshuang Yang3, Zuozheng Lian1,2, Lianhe Cui1

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3095-3117, 2023, DOI:10.32604/cmc.2023.045646 - 26 December 2023

    Abstract Influence Maximization (IM) aims to select a seed set of size k in a social network so that information can be spread most widely under a specific information propagation model through this set of nodes. However, most existing studies on the IM problem focus on static social network features, while neglecting the features of temporal social networks. To bridge this gap, we focus on node features reflected by their historical interaction behavior in temporal social networks, i.e., interaction attributes and self-similarity, and incorporate them into the influence maximization algorithm and information propagation model. Firstly, we propose… More >

  • Open Access

    ARTICLE

    An Efficient Character-Level Adversarial Attack Inspired by Textual Variations in Online Social Media Platforms

    Jebran Khan1, Kashif Ahmad2, Kyung-Ah Sohn1,3,*

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2869-2894, 2023, DOI:10.32604/csse.2023.040159 - 09 November 2023

    Abstract In recent years, the growing popularity of social media platforms has led to several interesting natural language processing (NLP) applications. However, these social media-based NLP applications are subject to different types of adversarial attacks due to the vulnerabilities of machine learning (ML) and NLP techniques. This work presents a new low-level adversarial attack recipe inspired by textual variations in online social media communication. These variations are generated to convey the message using out-of-vocabulary words based on visual and phonetic similarities of characters and words in the shortest possible form. The intuition of the proposed scheme… More >

  • Open Access

    ARTICLE

    An Enhanced Automatic Arabic Essay Scoring System Based on Machine Learning Algorithms

    Nourmeen Lotfy1, Abdulaziz Shehab1,2,*, Mohammed Elhoseny1,3, Ahmed Abu-Elfetouh1

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1227-1249, 2023, DOI:10.32604/cmc.2023.039185 - 31 October 2023

    Abstract Despite the extensive effort to improve intelligent educational tools for smart learning environments, automatic Arabic essay scoring remains a big research challenge. The nature of the writing style of the Arabic language makes the problem even more complicated. This study designs, implements, and evaluates an automatic Arabic essay scoring system. The proposed system starts with pre-processing the student answer and model answer dataset using data cleaning and natural language processing tasks. Then, it comprises two main components: the grading engine and the adaptive fusion engine. The grading engine employs string-based and corpus-based similarity algorithms separately.… More >

  • Open Access

    ARTICLE

    Two-Stage Edge-Side Fault Diagnosis Method Based on Double Knowledge Distillation

    Yang Yang1, Yuhan Long1, Yijing Lin2, Zhipeng Gao1, Lanlan Rui1, Peng Yu1,3,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3623-3651, 2023, DOI:10.32604/cmc.2023.040250 - 08 October 2023

    Abstract With the rapid development of the Internet of Things (IoT), the automation of edge-side equipment has emerged as a significant trend. The existing fault diagnosis methods have the characteristics of heavy computing and storage load, and most of them have computational redundancy, which is not suitable for deployment on edge devices with limited resources and capabilities. This paper proposes a novel two-stage edge-side fault diagnosis method based on double knowledge distillation. First, we offer a clustering-based self-knowledge distillation approach (Cluster KD), which takes the mean value of the sample diagnosis results, clusters them, and takes… More >

Displaying 21-30 on page 3 of 129. Per Page