Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,162)
  • Open Access

    ARTICLE

    Excluded Volumes of Anisotropic Convex Particles in Heterogeneous Media: Theoretical and Numerical Studies

    Wenxiang Xu1,2,3,4, Ganquan Yang5, Peng Lan2, Huaifa Ma1

    CMC-Computers, Materials & Continua, Vol.52, No.1, pp. 25-40, 2016, DOI:10.3970/cmc.2016.052.025

    Abstract Understanding the excluded volume of anisotropic particle is of great importance in the evaluation of continuum percolation and random packing behaviors of soft/hard particle systems in heterogeneous disordered media. In this work, we obtain the excluded volumes of several anisotropic convex particles including prolate spheroids, oblate spheroids, spherocylinders, and Platonic particles, using theoretical and numerical approaches. According to the second virial coefficient, we first present a theoretical scheme for determining the excluded volumes of anisotropic particles. Also, the mean tangent diameters of anisotropic convex particles are formulated by the quantitative stereology. Subsequently, Monte Carlo simulations are demonstrated to numerically evaluate… More >

  • Open Access

    ARTICLE

    Monte Carlo Simulation of Ti-6Al-4V Grain Growth during Fast Heat Treatment

    Amir Reza Ansari Dezfoli1, Weng-Sing Hwang1,2

    CMC-Computers, Materials & Continua, Vol.49-50, No.1, pp. 1-11, 2015, DOI:10.3970/cmc.2015.049.001

    Abstract Investigations of the microstructural evolution of Titanium (Ti) alloys during high temperature processes and heat treatment are attracting more attention due to wide variety of applications for such alloys. In most of these processes the Titanium alloys are subjected to fast heating or cooling rates. In this paper, Monte Carlo simulation is used to simulate the grain growth kinetics of Ti-6Al-4V alloy during fast heat treatment. Here, Monte Carlo simulation of grain growth is based on the Q-state Potts model. Our model is calibrated using the parabolic grain growth law, dn-d0n = kt, where the empirical constants are taken… More >

  • Open Access

    ARTICLE

    On the Buckling Response of Offshore Pipelines under Combined Tension, Bending, and External Pressure

    Yanbin Wang1,2, Deli Gao1, Jun Fang1

    CMC-Computers, Materials & Continua, Vol.48, No.1, pp. 25-42, 2015, DOI:10.3970/cmc.2015.048.025

    Abstract In this paper, the buckling and collapse analysis of offshore pipeline under combined tension, bending moment, and external pressure has been presented with theoretical analysis and FE (finite element) simulation method respectively. Based on the model initially proposed by Kyriakides, a 2-D theoretical model has been further developed. To verify the correctness and accuracy of the model proposed in this paper, numerical simulations have been conducted with 3-D FE model using ABAQUS software. Good consistency has been shown between the calculation results which validate the availability of the theoretical analysis. On this basis, the influence of load path, material properties,… More >

  • Open Access

    ARTICLE

    EvaluatingWater Vapor Permeance Measurement Techniques for Highly Permeable Membranes

    Bui Duc Thuan1,2, Wong Yonghui2, Chua Kian Jon2, Ng Kim Choon2

    CMC-Computers, Materials & Continua, Vol.47, No.2, pp. 89-105, 2015, DOI:10.3970/cmc.2015.047.089

    Abstract The cup method and dynamic moisture permeation cell (DMPC) method are two common techniques used to determine the water vapor permeation properties of a membrane. Often, ignoring the resistance of boundary air layers to the transport of water vapor results in the water vapor permeance of the membrane being underestimated in practical tests. The measurement errors are higher with highly permeable membranes. In this study, the two methods were simulated using COMSOL Multiphysics platform and the extent of the error was evaluated. Initial results showed that the error is equally high in both methods. With the correction for the still… More >

  • Open Access

    ARTICLE

    Computing the Electric and Magnetic Green’s Functions in General Electrically Gyrotropic Media

    V. G. Yakhno1, B. Çiçek2

    CMC-Computers, Materials & Continua, Vol.44, No.3, pp. 141-166, 2014, DOI:10.3970/cmc.2014.044.141

    Abstract A method for an approximate computation of the electric and magnetic Green’s functions for the time-harmonic Maxwell’s equations in the general electrically gyrotropic materials is proposed. This method is based on the Fourier transform meta-approach: the equations for electric and magnetic fields are written in terms of images of the Fourier transform with respect to space variables and as a result of it the linear algebraic systems for finding Fourier images of the columns of the Green’s functions are obtained. The explicit formulas for the solutions of the obtained systems have been found. Finally, elements of the Green’s functions are… More >

  • Open Access

    ARTICLE

    Modelling of Nanoscale Friction using Network Simulation Method

    F. Marín1, F. Alhama1, J.A. Moreno1

    CMC-Computers, Materials & Continua, Vol.43, No.1, pp. 1-20, 2014, DOI:10.3970/cmc.2014.043.001

    Abstract The field of nanotribology in the last decades was established through the introduction of Atomic Force/Friction Force Microscopes. However, our theoretical understanding of the individual processes involved in friction force microscopy is limited. This work designs a reliable and efficient model for the stickslip phenomenon, following the rules of network simulation. The model is able to manage different types of potential between the tip and the sample surface, allowing different kinds of sample material and microscope tip properties to be simulated with only minor changes in the code. The most analysed tribological materials in technical literature are simulated to test… More >

  • Open Access

    ARTICLE

    Design, Fabrication, Characterization and Simulation of PIP-SiC/SiC Composites

    S. Zhao1, Zichun Yang1,2, X. G. Zhou3, X. Z. Ling4, L. S. Mora5, D. Khoshkhou6, J. Marrow5

    CMC-Computers, Materials & Continua, Vol.42, No.2, pp. 103-124, 2014, DOI:10.3970/cmc.2014.042.103

    Abstract Continuous SiC fiber reinforced SiC matrix composites (SiC/SiC) have been studied and developed for high temperature and fusion applications. Polymer impregnation and pyrolysis (PIP) is a conventional technique for fabricating SiC/SiC composites. In this research, KD-1 SiC fibers were employed as reinforcements, a series of coatings such as pyrocarbon (PyC), SiC and carbon nanotubes (CNTs) were synthesized as interphases, PCS and LPVCS were used as precursors and SiC/SiC composites were prepared via the PIP method. The mechanical properties of the SiC/SiC composites were characterized. Relationship between the interphase shear strength and the fracture toughness of the composites was established. X-ray… More >

  • Open Access

    ARTICLE

    Stochastic Macro Material Properties, Through Direct Stochastic Modeling of Heterogeneous Microstructures with Randomness of Constituent Properties and Topologies, by Using Trefftz Computational Grains (TCG)

    Leiting Dong1,2, Salah H. Gamal3, Satya N. Atluri2,4

    CMC-Computers, Materials & Continua, Vol.37, No.1, pp. 1-21, 2013, DOI:10.3970/cmc.2013.037.001

    Abstract In this paper, a simple and reliable procedure of stochastic computation is combined with the highly accurate and efficient Trefftz Computational Grains (TCG), for a direct numerical simulation (DNS) of heterogeneous materials with microscopic randomness. Material properties of each material phase, and geometrical properties such as particles sizes and distribution, are considered to be stochastic with either a uniform or normal probabilistic distributions. The objective here is to determine how this microscopic randomness propagates to the macroscopic scale, and affects the stochastic characteristics of macroscopic material properties. Four steps are included in this procedure: (1) using the Latin hypercube sampling,… More >

  • Open Access

    ARTICLE

    Molecular Dynamics Simulations of the Nanoindentation for Aluminum and Copper

    Xiaozhi Tang1, Yafang Guo1, Yu Gao1

    CMC-Computers, Materials & Continua, Vol.23, No.1, pp. 1-8, 2011, DOI:10.3970/cmc.2011.023.001

    Abstract Atomistic simulations were performed to study the nanoindentation for two kinds of FCC metals, aluminum and copper. Due to the higher stacking faults in aluminum than in copper, two different deformation mechanisms were observed in our simulation under exactly the same simulation condition. Aluminum and copper also showed different mechanical properties in the unloading stage. The influence of stacking sequence along the loading direction on deformation mechanism was also investigated in this paper. More >

  • Open Access

    ARTICLE

    Numerical Simulation on the Shielding Efficiency of Magnetic Shielding Enclosures in the ITER Applications

    Yong Kou1, Ke Jin1, Xiaojing Zheng1,2

    CMC-Computers, Materials & Continua, Vol.22, No.2, pp. 129-146, 2011, DOI:10.3970/cmc.2011.022.129

    Abstract Magnetic shielding needs to be employed to ensure proper operation of some electronic equipment which are sensitive to external magnetic interference, such as cryogenic valves located inside the ITER feeder cubicles. This paper is concerned with the shielding efficiency of the magnetic shielding enclosures. A 3-D theoretical model for Fe-Ni alloy magnetic shielding enclosures based on finite element method (FEM) is obtained with the nonlinear law of magnetization. The influence of shielding materials, enclosure configurations, single or multi- layer designs, and apertures on the shielding efficiency is investigated. It is shown that the proposed model can predict the shielding efficiency… More >

Displaying 1131-1140 on page 114 of 1162. Per Page