Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (88)
  • Open Access

    ARTICLE

    Multi-Objective Evolutionary Framework for High-Precision Community Detection in Complex Networks

    Asal Jameel Khudhair#, Amenah Dahim Abbood#,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-31, 2026, DOI:10.32604/cmc.2025.068553 - 10 November 2025

    Abstract Community detection is one of the most fundamental applications in understanding the structure of complicated networks. Furthermore, it is an important approach to identifying closely linked clusters of nodes that may represent underlying patterns and relationships. Networking structures are highly sensitive in social networks, requiring advanced techniques to accurately identify the structure of these communities. Most conventional algorithms for detecting communities perform inadequately with complicated networks. In addition, they miss out on accurately identifying clusters. Since single-objective optimization cannot always generate accurate and comprehensive results, as multi-objective optimization can. Therefore, we utilized two objective functions… More >

  • Open Access

    REVIEW

    A Comprehensive Review of Dynamic Community Detection: Taxonomy, Challenges, and Future Directions

    Hiba Sameer Saeed#, Amenah Dahim Abbood#,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4375-4405, 2025, DOI:10.32604/cmc.2025.067783 - 23 October 2025

    Abstract In recent years, the evolution of the community structure in social networks has gained significant attention. Due to the rapid and continuous evolution of real-world networks over time. This makes the process of identifying communities and tracking their topology changes challenging. To tackle these challenges, it is necessary to find efficient methodologies for analyzing the behavior patterns of dynamic communities. Several previous reviews have introduced algorithms and models for community detection. However, these methods have not been very accurate in identifying communities. Moreover, none of the reviewed papers made an apparent effort to link algorithms… More >

  • Open Access

    ARTICLE

    An Efficient Deep Learning-Based Hybrid Framework for Personality Trait Prediction through Behavioral Analysis

    Nareshkumar Raveendhran, Nimala Krishnan*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3253-3265, 2025, DOI:10.32604/cmc.2025.067490 - 23 September 2025

    Abstract Social media outlets deliver customers a medium for communication, exchange, and expression of their thoughts with others. The advent of social networks and the fast escalation of the quantity of data have created opportunities for textual evaluation. Utilising the user corpus, characteristics of social platform users, and other data, academic research may accurately discern the personality traits of users. This research examines the traits of consumer personalities. Usually, personality tests administered by psychological experts via interviews or self-report questionnaires are costly, time-consuming, complex, and labour-intensive. Currently, academics in computational linguistics are increasingly focused on predicting… More >

  • Open Access

    ARTICLE

    The Identification of Influential Users Based on Semi-Supervised Contrastive Learning

    Jialong Zhang1, Meijuan Yin2,*, Yang Pei2, Fenlin Liu2, Chenyu Wang2

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 2095-2115, 2025, DOI:10.32604/cmc.2025.065679 - 29 August 2025

    Abstract Identifying influential users in social networks is of great significance in areas such as public opinion monitoring and commercial promotion. Existing identification methods based on Graph Neural Networks (GNNs) often lead to yield inaccurate features of influential users due to neighborhood aggregation, and require a large substantial amount of labeled data for training, making them difficult and challenging to apply in practice. To address this issue, we propose a semi-supervised contrastive learning method for identifying influential users. First, the proposed method constructs positive and negative samples for contrastive learning based on multiple node centrality metrics… More >

  • Open Access

    ARTICLE

    Possible Classifications of Social Network Addiction: A Latent Profile Analysis of Chinese College Students

    Lin Luo1,2,*, Junfeng Yuan1, Yanling Wang1, Rui Zhu1, Huilin Xu1, Siyuan Bi1, Zhongge Zhang1

    International Journal of Mental Health Promotion, Vol.27, No.6, pp. 863-876, 2025, DOI:10.32604/ijmhp.2025.064385 - 30 June 2025

    Abstract Objectives: Social Network Addiction (SNA) is becoming increasingly prevalent among college students; however, there remains a lack of consensus regarding the measurement tools and their optimal cutoff score. This study aims to validate the 21-item Social Network Addiction Scale-Chinese (SNAS-C) in its Chinese version and to determine its optimal cutoff score for identifying potential SNA cases within the college student population. Methods: A cross-sectional survey was conducted, recruiting 3387 college students. Latent profile analysis (LPA) and receiver operating characteristic (ROC) curve analysis were employed to establish the optimal cutoff score for the validated 21-item SNAS-C. Results:More >

  • Open Access

    ARTICLE

    Deep Learning-Based Natural Language Processing Model and Optical Character Recognition for Detection of Online Grooming on Social Networking Services

    Sangmin Kim1, Byeongcheon Lee1, Muazzam Maqsood2, Jihoon Moon3,*, Seungmin Rho4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2079-2108, 2025, DOI:10.32604/cmes.2025.061653 - 30 May 2025

    Abstract The increased accessibility of social networking services (SNSs) has facilitated communication and information sharing among users. However, it has also heightened concerns about digital safety, particularly for children and adolescents who are increasingly exposed to online grooming crimes. Early and accurate identification of grooming conversations is crucial in preventing long-term harm to victims. However, research on grooming detection in South Korea remains limited, as existing models trained primarily on English text and fail to reflect the unique linguistic features of SNS conversations, leading to inaccurate classifications. To address these issues, this study proposes a novel… More >

  • Open Access

    ARTICLE

    A Deep Learning Framework for Arabic Cyberbullying Detection in Social Networks

    Yahya Tashtoush1,*, Areen Banysalim1, Majdi Maabreh2, Shorouq Al-Eidi3, Ola Karajeh4, Plamen Zahariev5

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3113-3134, 2025, DOI:10.32604/cmc.2025.062724 - 16 April 2025

    Abstract Social media has emerged as one of the most transformative developments on the internet, revolutionizing the way people communicate and interact. However, alongside its benefits, social media has also given rise to significant challenges, one of the most pressing being cyberbullying. This issue has become a major concern in modern society, particularly due to its profound negative impacts on the mental health and well-being of its victims. In the Arab world, where social media usage is exceptionally high, cyberbullying has become increasingly prevalent, necessitating urgent attention. Early detection of harmful online behavior is critical to… More >

  • Open Access

    ARTICLE

    Relationship between Psychological Security and Fear of Missing Out among University Students: A Moderated Mediation Model

    Xiaowen Wan1, Wenbin Sheng1, Rong Huang1, Cheng Zeng1, Xu Zhou2,*, Yuan Wu3, Xiaohui Cao1, Xiaoke Chen1

    International Journal of Mental Health Promotion, Vol.27, No.2, pp. 215-229, 2025, DOI:10.32604/ijmhp.2025.059074 - 03 March 2025

    Abstract Background: As the digital age progresses, fear of missing out (FoMO) is becoming increasingly common, and the impact factor of FOMO needs to be further investigated. This study aims to explore the relationship between psychological security (PS) and FoMO by analyzing the mediating role of social networking addiction (SNA) and the moderating role of social self-efficacy (SSE). Methods: We collected a sample of 1181 college students (with a mean age of 19.67 ± 1.38 years) from five universities in a province of mainland China through cluster sampling. Data were gathered using the psychological security questionnaire… More >

  • Open Access

    ARTICLE

    A Dynamic Social Network Graph Anonymity Scheme with Community Structure Protection

    Yuanjing Hao, Xuemin Wang, Liang Chang*, Long Li, Mingmeng Zhang

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3131-3159, 2025, DOI:10.32604/cmc.2024.059201 - 17 February 2025

    Abstract Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate these attacks but are cumbersome, neglect dynamic protection of community structure, and lack precise utility measures. To address these challenges, we present a dynamic social network graph anonymity scheme with community structure protection (DSNGA-CSP), which achieves the dynamic anonymization process by incorporating community detection. First, DSNGA-CSP categorizes communities of the original graph into three types at each timestamp, and only partitions community subgraphs for a specific… More >

  • Open Access

    ARTICLE

    An Expert System to Detect Political Arabic Articles Orientation Using CatBoost Classifier Boosted by Multi-Level Features

    Saad M. Darwish1,*, Abdul Rahman M. Sabri2, Dhafar Hamed Abd2, Adel A. Elzoghabi1

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1595-1624, 2024, DOI:10.32604/csse.2024.054615 - 22 November 2024

    Abstract The number of blogs and other forms of opinionated online content has increased dramatically in recent years. Many fields, including academia and national security, place an emphasis on automated political article orientation detection. Political articles (especially in the Arab world) are different from other articles due to their subjectivity, in which the author’s beliefs and political affiliation might have a significant influence on a political article. With categories representing the main political ideologies, this problem may be thought of as a subset of the text categorization (classification). In general, the performance of machine learning models… More >

Displaying 1-10 on page 1 of 88. Per Page