Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (32)
  • Open Access

    ARTICLE

    Electro-Optical Model of Soiling Effects on Photovoltaic Panels and Performance Implications

    A. Asbayou1,*, G.P. Smestad2, I. Ismail1, A. Soussi1, A. Elfanaoui1, L. Bouhouch1, A. Ihlal1

    Energy Engineering, Vol.121, No.2, pp. 243-258, 2024, DOI:10.32604/ee.2024.046409

    Abstract In this paper, a detailed model of a photovoltaic (PV) panel is used to study the accumulation of dust on solar panels. The presence of dust diminishes the incident light intensity penetrating the panel’s cover glass, as it increases the reflection of light by particles. This phenomenon, commonly known as the “soiling effect”, presents a significant challenge to PV systems on a global scale. Two basic models of the equivalent circuits of a solar cell can be found, namely the single-diode model and the two-diode models. The limitation of efficiency data in manufacturers’ datasheets has encouraged us to develop an… More > Graphic Abstract

    Electro-Optical Model of Soiling Effects on Photovoltaic Panels and Performance Implications

  • Open Access

    ARTICLE

    Spatial and Temporal Distribution Characteristics of Solar Energy Resources in Tibet

    Yanbo Shen1,2, Yang Gao3, Yueming Hu1,2, Xin Yao4, Wenzheng Yu4,*, Yubing Zhang4

    Energy Engineering, Vol.121, No.1, pp. 43-57, 2024, DOI:10.32604/ee.2023.041921

    Abstract The Tibet Plateau is one of the regions with the richest solar energy resources in the world. In the process of achieving carbon neutrality in China, the development and utilization of solar energy resources in the region will play an important role. In this study, the gridded solar resource data with 1 km resolution in Tibet were obtained by spatial correction and downscaling of SMARTS model. On this basis, the spatial and temporal distribution characteristics of solar energy resources in the region in the past 30 years (1991–2020) are finely evaluated, and the annual global horizontal radiation resource is calculated.… More >

  • Open Access

    ARTICLE

    Heat Transfer Characteristics for Solar Energy Aspect on the Flow of Tangent Hyperbolic Hybrid Nanofluid over a Sensor Wedge and Stagnation Point Surface

    Asmaa Habib Alanzi, N. Ameer Ahammad*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 179-197, 2023, DOI:10.32604/fhmt.2023.042009

    Abstract The conversion of solar radiation to thermal energy has recently attracted a lot of interest as the requirement for renewable heat and power grows. Due to their enhanced ability to promote heat transmission, nanofluids can significantly contribute to enhancing the efficiency of solar-thermal systems. This article focus solar energy aspect on the effects of the thermal radiation in the flow of a hyperbolic tangent nanofluid containing magnesium oxide (MgO) and silver (Ag) are the nanoparticle with the base fluid as kerosene through a wedge and stagnation. The system of hybrid nanofluid transport equations are transformed into ordinary differential systems using… More >

  • Open Access

    ARTICLE

    Modeling and Optimization of Solar Collector Design for the Improvement of Solar-Air Source Heat Pump Building Heating System

    Jiarui Wu1, Yuzhen Kang2, Junxiao Feng1,*

    Energy Engineering, Vol.120, No.12, pp. 2783-2802, 2023, DOI:10.32604/ee.2023.029358

    Abstract To enhance system stability, solar collectors have been integrated with air-source heat pumps. This integration facilitates the concurrent utilization of solar and air as energy sources for the system, leading to an improvement in the system's heat generation coefficient, overall efficiency, and stability. In this study, we focus on a residential building located in Lhasa as the target for heating purposes. Initially, we simulate and analyze a solar-air source heat pump combined heating system. Subsequently, while ensuring the system meets user requirements, we examine the influence of solar collector installation angles and collector area on the performance of the solar-air… More >

  • Open Access

    PROCEEDINGS

    Solar Energy Storage in Deep Saline Aquifers: Three-Dimensional HydroThermo Modeling and Feasibility Analyses

    Yanyong Wang1,2, Kunpeng Zhong1, Xiaoguang Wang1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09443

    Abstract The storage of solar energy in the subsurface in terms of heat is considered as a promising way for energy storage and conversion in future, which has a great potential to solve the temporal and spatial mismatch between energy demand and supply. Thermal energy storage in deep saline aquifers is capable to convert intermittent solar energy into high temperature stable geothermal energy. In this study, we propose a new solar energy storage and conversion system in which solar energy is firstly converted into heat using parabolic trough and then thermal energy storage in deep saline aquifer is conducted by high… More >

  • Open Access

    ARTICLE

    Research on Operation Optimization of Heating System Based on Electric Storage Coupled Solar Energy and Air Source Heat Pump

    Jingxiao Han1, Chuanzhao Zhang2, Lu Wang3,*, Zengjun Chang1, Qing Zhao1, Ying Shi4, Jiarui Wu5, Xiangfei Kong3

    Energy Engineering, Vol.120, No.9, pp. 1991-2011, 2023, DOI:10.32604/ee.2023.029749

    Abstract For heating systems based on electricity storage coupled with solar energy and an air source heat pump (ECSA), choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency. In this paper, four cities in three climatic regions in China were selected, namely Nanjing in the hot summer and cold winter region, Tianjin in the cold region, Shenyang and Harbin in the severe cold winter region. The levelized cost of heat (LCOH) was used as the economic evaluation index, and the energy consumption and emissions of different pollutants were analyzed. TRNSYS software was… More > Graphic Abstract

    Research on Operation Optimization of Heating System Based on Electric Storage Coupled Solar Energy and Air Source Heat Pump

  • Open Access

    ARTICLE

    CT-NET: A Novel Convolutional Transformer-Based Network for Short-Term Solar Energy Forecasting Using Climatic Information

    Muhammad Munsif1,2, Fath U Min Ullah1,2, Samee Ullah Khan1,2, Noman Khan1,2, Sung Wook Baik1,2,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1751-1773, 2023, DOI:10.32604/csse.2023.038514

    Abstract Photovoltaic (PV) systems are environmentally friendly, generate green energy, and receive support from policies and organizations. However, weather fluctuations make large-scale PV power integration and management challenging despite the economic benefits. Existing PV forecasting techniques (sequential and convolutional neural networks (CNN)) are sensitive to environmental conditions, reducing energy distribution system performance. To handle these issues, this article proposes an efficient, weather-resilient convolutional-transformer-based network (CT-NET) for accurate and efficient PV power forecasting. The network consists of three main modules. First, the acquired PV generation data are forwarded to the pre-processing module for data refinement. Next, to carry out data encoding, a… More >

  • Open Access

    ARTICLE

    HEAT AND MASS TRANSFER AND ENTROPY GENERATION INSIDE 3D TRAPEZOIDAL SOLAR DISTILLER

    Walid Aicha,c, Lioua Kolsia,d,*, Abdelkarim Aydie,f, Abdullah A.A.A Al-Rashedb , Noureddine Ait Messaoudenea , Mohamed Naceur Borjinid

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-9, 2017, DOI:10.5098/hmt.9.8

    Abstract Numerical study of double-diffusive natural convection flow and entropy generation in 3D trapezoidal solar distiller was performed using computational fluid dynamics (CFD). In this research the flow, provoked by the interaction of chemical species diffusions and the thermal energy, is assumed to be laminar. Using potential vector-vorticity formulation in its three-dimensional form, the governing equations are formulated and solved by the numerical methodology based on the finite volume method. The main objective is to analyze the effects of buoyancy ratio for opposed temperature and concentration gradients and to focus the attention on three-dimensional aspects and generated entropy. The occurring heat… More >

  • Open Access

    ARTICLE

    Hyperparameter Optimization Based Deep Belief Network for Clean Buses Using Solar Energy Model

    Shekaina Justin1,*, Wafaa Saleh1,2, Tasneem Al Ghamdi1, J. Shermina3

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 1091-1109, 2023, DOI:10.32604/iasc.2023.032589

    Abstract Renewable energy has become a solution to the world’s energy concerns in recent years. Photovoltaic (PV) technology is the fastest technique to convert solar radiation into electricity. Solar-powered buses, metros, and cars use PV technology. Such technologies are always evolving. Included in the parameters that need to be analysed and examined include PV capabilities, vehicle power requirements, utility patterns, acceleration and deceleration rates, and storage module type and capacity, among others. PVPG is intermittent and weather-dependent. Accurate forecasting and modelling of PV system output power are key to managing storage, delivery, and smart grids. With unparalleled data granularity, a data-driven… More >

  • Open Access

    REVIEW

    A COMPREHENSIVE REVIEW OF PERFORMANCE ANALYSIS OF WITH AND WITHOUT FINS SOLAR THERMAL COLLECTOR

    Sushil Kumara , Robin Thakura, Amar Raj Singh Suria, Kamal Kashyapa, Arvind Singhya, Sunil Kumara, Anil Kumarb

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-11, 2021, DOI:10.5098/hmt.16.4

    Abstract Solar thermal collector is a simple, economic, and environment friendly equipment which is used to utilize solar energy for various agriculture and industrial applications. The investigators mainly focus on the improvement of the thermal performance by providing various fins shapes underside of the absorber plate in the single pass and double pass solar thermal collector. This work discusses the influence of different shaped fins used by various researchers in improving the thermal performance of thermal collectors. Fin’s design, geometries used, and their influence on turbulence and thermal performance have also been discussed. As per the literature review and comparative study… More >

Displaying 1-10 on page 1 of 32. Per Page