Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,167)
  • Open Access

    ARTICLE

    Computing Prager's Kinematic Hardening Mixed-Control Equations in a Pseudo-Riemann Manifold

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.12, No.3, pp. 161-180, 2006, DOI:10.3970/cmes.2006.012.161

    Abstract Materials' internal spacetime may bear certain similarities with the external spacetime of special relativity theory. Previously, it is shown that material hardening and anisotropy may cause the internal spacetime curved. In this paper we announce the third mechanism of mixed-control to cause the curvedness of internal spacetime. To tackle the mixed-control problem for a Prager kinematic hardening material, we demonstrate two new formulations. By using two-integrating factors idea we can derive two Lie type systems in the product space of Mm+1⊗Mn+1. The Lie algebra is a direct sum of so(m,1)so(n,1), and correspondingly the symmetry group is a direct product of… More >

  • Open Access

    ARTICLE

    Analysis of Circular Torsion Bar with Circular Holes Using Null-field Approach

    Jeng-Tzong Chen1, Wen-Cheng Shen2, Po-Yuan Chen2

    CMES-Computer Modeling in Engineering & Sciences, Vol.12, No.2, pp. 109-119, 2006, DOI:10.3970/cmes.2006.012.109

    Abstract In this paper, we derive the null-field integral equation for a circular bar weakened by circular cavities with arbitrary radii and positions under torque. To fully capture the circular geometries, separate forms of fundamental solution in the polar coordinate and Fourier series for boundary densities are adopted. The solution is formulated in a manner of a semi-analytical form since error purely attributes to the truncation of Fourier series. Torsion problems are revisited to demonstrate the validity of our method. Torsional rigidities for different number of holes are also discussed. More >

  • Open Access

    ARTICLE

    Preserving Constraints of Differential Equations by Numerical Methods Based on Integrating Factors

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.12, No.2, pp. 83-108, 2006, DOI:10.3970/cmes.2006.012.083

    Abstract The system we consider consists of two parts: a purely algebraic system describing the manifold of constraints and a differential part describing the dynamics on this manifold. For the constrained dynamical problem in its engineering application, it is utmost important to developing numerical methods that can preserve the constraints. We embed the nonlinear dynamical system with dimensions n and with k constraints into a mathematically equivalent n + k-dimensional nonlinear system, which including k integrating factors. Each subsystem of the k independent sets constitutes a Lie type system of X˙i = AiXi with Aiso(ni,1) and n1 +···+nkMore >

  • Open Access

    ARTICLE

    Hybrid Finite Element and Volume Integral Methods for Scattering Using Parametric Geometry

    John L. Volakis1, Kubilay Sertel1, Erik Jørgensen2, Rick W. Kindt1

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.5, pp. 463-476, 2004, DOI:10.3970/cmes.2004.005.463

    Abstract In this paper we address several topics relating to the development and implementation of volume integral and hybrid finite element methods for electromagnetic modeling. Comparisons of volume integral equation formulations with the finite element-boundary integral method are given in terms of accuracy and computing resources. We also discuss preconditioning and parallelization of the multilevel fast multipole method, and propose higher-order basis functions for curvilinear quadrilaterals and volumetric basis functions for curvilinear hexahedra. The latter have the desirable property of vanishing divergence within the element but non-zero curl. In addition, a new domain decomposition is introduced for solving array problems involving… More >

  • Open Access

    ARTICLE

    Review of Large Scale Computing in Electromagnetics with Fast Integral Equation Solvers

    W.C. Chew1, J.M. Song1, T.J. Cui1, S. Velamparambil1, M.L. Hastriter1, B. Hu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.4, pp. 361-372, 2004, DOI:10.3970/cmes.2004.005.361

    Abstract This paper reviews recent advances in large-scale computational electromagnetics using frequency domain integral equations. It gives a brief history of methods to solve Maxwell's equations, followed by a description of various historical ages in solution technique developments. Then it describes computational electromagnetics followed by a brief description of how fast integral equation solvers such as the multilevel fast multipole algorithm (MLFMA) is constructed using the tree network. Some examples of large scale computing using MLFMA are given. Ray physics used to further accelerate the speed of MLFMA. The parallel implementation of MLFMA in a code called ScaleME is reviewed, and… More >

  • Open Access

    ARTICLE

    New high-order integral methods in computational electromagnetism

    Oscar P. Bruno1

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.4, pp. 319-330, 2004, DOI:10.3970/cmes.2004.005.319

    Abstract We present a new set of high-order algorithms and methodologies for the numerical solution of problems of scattering by complex bodies in three-dimensional space. These methods, which are based on integral equations, high-order integration and Fast Fourier Transforms, can be used in the solution of problems of electromagnetic and acoustic scattering by surfaces and penetrable scatterers---even in cases in which the scatterers contain geometric singularities such as corners and edges. The solvers presented here exhibit high-order convergence, they run on low memories and reduced operation counts, and they result in solutions with a high degree of accuracy. More >

  • Open Access

    ARTICLE

    Development of New Algorithms for High Frequency Electromagnetic Scattering

    E. Bleszynski1, M. Bleszynski1, T. Jaroszewicz1

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.4, pp. 295-318, 2004, DOI:10.3970/cmes.2004.005.295

    Abstract We describe elements of our current work on the development of new methods for high frequency electromagnetic scattering, based on the wavefront (WF) representation of propagating fields and on the asymptotic but rigorous solution of integral equations for surface currents. In the wavefront evolution technique, surfaces of constant phase are constructed and treated not merely as collections of independent rays, but as well defined geometrical objects endowed with the full connectivity information. Hence, a precise determination of shadow and reflection boundaries, a construction of (multiply) diffracted wavefronts, a dynamic adjustment of the number of rays, an approximately constant ray-ray distance,… More >

  • Open Access

    ARTICLE

    A Numerical Model for Elastoplastic Rough Contact

    P. Sainsot1, C. Jacq2, D. Nélias1

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.4, pp. 497-506, 2002, DOI:10.3970/cmes.2002.003.497

    Abstract Pressure distributions calculated in the simulation of rough contacts show high values and induce high stresses just beneath the surface. These stresses often exceed the yield strength of the material, therefore, a purely elastic contact model is restrictive. Plastic flow occurs and modifies the surface shape and consequently modifies the surface pressure.
    This paper presents a numerical model for 3D-elastoplastic rough contact. It allows the determination of real pressure and permanent surface displacement (flattening of asperities) as well as residual stresses and plastic strains useful in fatigue analysis. The material is assumed to follow the Von-Mises yield criterion with… More >

  • Open Access

    EDITORIAL

    Virtual Tribology: Integrating Model-Based Simulations with Modern Computation/Information Technologies

    Q. Jane Wang1, Michael D. Bryant2, Leon M. Keer1, Richard F. Salant3

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.4, pp. 417-430, 2002, DOI:10.3970/cmes.2002.003.417

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    A Green's Function for Variable Density Elastodynamics under Plane Strain Conditions by Hormander's Method

    George D. Manolis1, Stavros Pavlou2

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.3, pp. 399-416, 2002, DOI:10.3970/cmes.2002.003.399

    Abstract A free-space Green's function for problems involving time-harmonic elastic waves in variable density materials under plane strain conditions is developed herein by means of Hormander's method in the context of matrix algebra formalism. The challenge when solving problems involving inhomogenous media is that the coefficients appearing in the governing equations of motion are position-dependent. Furthermore, an additional difficulty stems from the fact that these governing equations are vectorial, which implies that coordinate transformation techniques that have been successful with scalar waves can no longer be used. Thus, the present work aims at establishing the necessary background that will allow for… More >

Displaying 961-970 on page 97 of 1167. Per Page