Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,258)
  • Open Access

    ARTICLE

    Block Stratification of Sedimenting Granular Matter in a Vessel due to Vertical Vibrations

    V.G. Kozlov1,2, A.A. Ivanova3, P. Evesque1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.3, pp. 203-210, 2006, DOI:10.3970/fdmp.2006.002.203

    Abstract Sedimentation of granular matter in a vertical channel filled with a viscous liquid and subject to longitudinal translational vibration is studied, starting froma compact suspension. A new vibrational effect is foundexperimentally and described theoretically; it is the formation of blocks (with a relatively high density) of sedimenting granular matter with stable lower and upper horizontal demarcations and a sharp density discontinuity. Owing to this phenomenon the sedimentation velocity of such granular matter is reduced. A new theoreticalmodel based on viscous vibrational particle interactionin the limit of concentrated suspensions is elaborated, assuming particle-particle attraction in direction More >

  • Open Access

    REVIEW

    Regulation of Vascular Smooth Muscle Cells and Mesenchymal Stem Cells by Mechanical Strain

    Kyle Kurpinski1,2,3, Jennifer Park1,2,3, Rahul G. Thakar1,2,3, Song Li1,2

    Molecular & Cellular Biomechanics, Vol.3, No.1, pp. 21-34, 2006, DOI:10.3970/mcb.2006.003.021

    Abstract Vascular smooth muscle cells (SMCs) populate in the media of the blood vessel, and play an important role in the control of vasoactivity and the remodeling of the vessel wall. Blood vessels are constantly subjected to hemodynamic stresses, and the pulsatile nature of the blood flow results in a cyclic mechanical strain in the vessel walls. Accumulating evidence in the past two decades indicates that mechanical strain regulates vascular SMC phenotype, function and matrix remodeling. Bone marrow mesenchymal stem cell (MSC) is a potential cell source for vascular regeneration therapy, and may be used to More >

  • Open Access

    ARTICLE

    Distributed Finite Element Normalized Approximate Inverse Preconditioning

    G.A. Gravvanis1, K.M. Giannoutakis1

    CMES-Computer Modeling in Engineering & Sciences, Vol.16, No.2, pp. 69-82, 2006, DOI:10.3970/cmes.2006.016.069

    Abstract A new class of normalized explicit optimized approximate inverse finite element matrix techniques, based on normalized finite element approximate factorization procedures, for solving sparse linear systems resulting from the finite element discretization of partial differential equations in three space variables are introduced. A new parallel normalized explicit preconditioned conjugate gradient square method in conjunction with normalized approximate inverse finite element matrix techniques for solving efficiently sparse finite element linear systems on distributed memory systems is also presented along with theoretical estimates on speedups and efficiency. The performance on a distributed memory machine, using Message Passing More >

  • Open Access

    ARTICLE

    An Efficient Simultaneous Estimation of Temperature-Dependent Thermophysical Properties

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.2, pp. 77-90, 2006, DOI:10.3970/cmes.2006.014.077

    Abstract In this paper we derive the first-order and second-order one-step GPS applied to the estimation of thermophysical properties. Solving the resultant algebraic equations, which usually converges within ten iterations, it is not difficult to estimate the unknown temperature-dependent thermal conductivity and heat capacity simultaneously, if some supplemented data of measured temperature at a time T is provided. When the measured temperature in the conducting slab is contaminated by noise, our estimated results are also good. The new method does not require any prior information on the functional forms of thermal conductivity and heat capacity. Numerical examples More >

  • Open Access

    ARTICLE

    Responses of Piezoelectric, Transversely Isotropic, Functionally Graded, and Multilayered Half Spaces to Uniform Circular Surface Loadings

    F. Han1, E. Pan1, A.K. Roy2, Z.Q. Yue3

    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.1, pp. 15-30, 2006, DOI:10.3970/cmes.2006.014.015

    Abstract In this paper, an analytical solution is presented to study the response of piezoelectric, transversely isotropic, functionally graded, and multilayered half spaces to uniform circular surface loadings (pressure or negative electric charge). The inhomogeneous material is exponentially graded in the vertical direction and can have multiple discrete layers. The propagator matrix method and cylindrical system of vector functions are used to first derive the solution in the transformed domain. In order to find the responses in the physical-domain, which are expressed in one-dimensional infinite integrals of the Bessel function products, we introduced and adopted an… More >

  • Open Access

    ARTICLE

    Preserving Constraints of Differential Equations by Numerical Methods Based on Integrating Factors

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.12, No.2, pp. 83-108, 2006, DOI:10.3970/cmes.2006.012.083

    Abstract The system we consider consists of two parts: a purely algebraic system describing the manifold of constraints and a differential part describing the dynamics on this manifold. For the constrained dynamical problem in its engineering application, it is utmost important to developing numerical methods that can preserve the constraints. We embed the nonlinear dynamical system with dimensions n and with k constraints into a mathematically equivalent n + k-dimensional nonlinear system, which including k integrating factors. Each subsystem of the k independent sets constitutes a Lie type system of X˙i = AiXi with Aiso(ni,1) and n1 +···+nk = n.… More >

  • Open Access

    ARTICLE

    MATES : Multi-Agent based Traffic and Environment Simulator -- Theory, Implementation and Practical Application

    S. Yoshimura 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.11, No.1, pp. 17-26, 2006, DOI:10.3970/cmes.2006.011.017

    Abstract This paper describes a development of an advanced traffic simulator based on a multi-agent approach which is named MATES (Multi-Agent based Traffic and Environment Simulator). City traffic phenomena are essentially regarded as complex systems consisting of a number of human beings. Each element creating traffic phenomena such as car (driver), traffic signal, pedestrian and others is modeled as an intelligent agent that possesses its own logic of behavior and preference. The environment surrounding each agent consists of other cars, road network, traffic signals, pedestrian and others. Interaction among numerous agents simulates nonlinear behaviors of city More >

  • Open Access

    ARTICLE

    Molten-Alloy Driven Self-Assembly for Nano and Micro Scale System Integration

    Ehsan Saeedi1, Shaghayegh Abbasi1, Karl F. B ¨ohringer1, Babak A. Parviz1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.4, pp. 221-246, 2006, DOI:10.3970/fdmp.2006.002.221

    Abstract Self-assembly is emerging as one of the main methods for construction of heterogeneous systems consisting of multiple component types in nano- and micro-scales. The engineered self-assembly used for system integration involves preparation of parts that can recognize and bind to each other or a template, and perfection of procedures that allow for high yield self-assembly of these parts into a system. Capillary forces resultant from molten alloys are attractive candidates for driving such self-assembly processes as they can simultaneously provide electrical and mechanical connections. The basic self-assembly process is reviewed here. Selection of the appropriate More >

  • Open Access

    ARTICLE

    Influence of Layer Height on Thermal Buoyancy Convection in A System with Two Superposed Fluids Confined in A Parallelepipedic Cavity

    Sunil Punjabi1, K. Muralidhar2, P. K. Panigrahi2

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.2, pp. 95-106, 2006, DOI:10.3970/fdmp.2006.002.095

    Abstract Convection in a differentially heated two-layer system consisting of air and water was studied experimentally, using laser-interferometry. The cavity used for flow visualization was square in cross-section and rectangular in-plan having dimensions of 447 × 32 × 32 mm3. Experiments performed over different layer thicknesses of water filled in a square cross-section cavity, the rest being air, are reported in the present work. The following temperature differences for each layer height were imposed across the hot and the cold walls of the superposed fluid layers: (i) ΔT=10K and (ii)ΔT =18 K. The present study was aimed… More >

  • Open Access

    ARTICLE

    Thermocapillary Effects in Systems with Variable Liquid Mass Exposed to Concentrated Heating

    M.El-Gammal1, J.M.Floryan1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.1, pp. 17-26, 2006, DOI:10.3970/fdmp.2006.002.017

    Abstract Interface deformation and thermocapillary rupture in a cavity with free upper surface subject to concentrated heating from above is investigated. The dynamics of the process is modulated by placing different amounts of liquid in the cavity. The results determined for large Biot and zero Marangoni numbers show the existence of limit points beyond which steady, continuous interface cannot exist and processes leading to the interface rupture develop. Evolution of the limit point as a function of the mass of the liquid is investigated. The topology of the flow field is found to be qualitatively similar, More >

Displaying 3221-3230 on page 323 of 3258. Per Page