Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (32)
  • Open Access

    ARTICLE

    Oxygen Transport in Tissue Engineering Systems: Cartilage and Myocardium

    B. Obradovic1, M. Radisic2, G. Vunjak-Novakovic3

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.3, pp. 189-202, 2007, DOI:10.3970/fdmp.2007.003.189

    Abstract Efficient transport of oxygen is one of the main requirements in tissue engineering systems in order to avoid cell death in the inner tissue regions and support uniform tissue regeneration. In this paper, we review approaches to design of tissue engineering systems with adequate oxygen delivery for cultivation of cartilage and myocardium, two distinctly different tissue types with respect to the tissue structure and oxygen requirements. Mathematical modeling was used to support experimental results and predict oxygen transport within the cultivated tissues and correlate it to the cell response and tissue properties. More >

  • Open Access

    ARTICLE

    Fluid Dynamics of a Micro-Bioreactor for Tissue Engineering

    P. Yu1, T. S. Lee1, Y. Zeng1, H. T. Low2

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.3, pp. 235-246, 2005, DOI:10.3970/fdmp.2005.001.235

    Abstract A numerical model is developed for the investigation of flow field and mass transport in a micro-bioreactor, of working volume below 5 ml, in which medium mixing is generated by a magnetic stirrer-rod rotating on the bottom. The flow-field results show that a recirculation region exists above the stirrer rod and rotates with it; the related fluid mixing is characterized by a circulation coefficient of up to 0.2 which is about five times smaller than that of a one-litre stirred-tank bioreactor. The oxygen transfer coefficient is less than 5 h-1 which is two orders smaller than that of a 10-litre… More >

Displaying 31-40 on page 4 of 32. Per Page