Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (39)
  • Open Access

    PROCEEDINGS

    AI-Assisted Generative Inverse Design of Heterogeneous Meta-Biomaterials Based on TPMS for Biomimetic Tissue Engineering

    Xiaolong Zhu, Feng Chen, Yuntian Chen, Wei Zhu, Xiaoxiao Han*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.012584

    Abstract Human tissues and organs exhibit not only intricate anatomical architectures but also spatially heterogeneous distributions of elastic modulus—for example, between cancellous and cortical bone, across the epidermis, dermis, and subcutaneous layers, and between healthy and fibrotic liver tissues. Conventional biomaterials often fail to replicate such mechanical heterogeneity, thereby limiting their capacity to recreate biomimetic physiological microenvironments essential for applications like tissue regeneration and disease modeling. Meta-biomaterials, artificially engineered through the rational structural design of continuous materials, have emerged as a promising class of materials owing to their highly tunable mechanical and biological properties. These attributes… More >

  • Open Access

    REVIEW

    A Review of PEO (Polyethylene Oxide) Assisted Electrospinning of Chitosan: Innovation, Production, and Application

    Md. Tanvir Raihan1, Md. Himel Mahmud2, Badhon Chandra Mazumder2, Md. Nazif Hasan Chowdhury3, Mohammad Tajul Islam1,*

    Journal of Polymer Materials, Vol.42, No.3, pp. 677-711, 2025, DOI:10.32604/jpm.2025.068356 - 30 September 2025

    Abstract Electrospinning has gained significant importance across various fields, including biomedicine, filtration, and packaging due to the control it provides over the properties of the resulting materials, such as fiber diameter and membrane thickness. Chitosan is a biopolymer that can be utilized with both natural and synthetic copolymers, owing to its therapeutic potential, biocompatibility, and biodegradability. However, producing electrospun chitosan is challenging due to its high solution viscosity, which often results in the formation of beads instead of uniform fibers. To address this issue, the spinnability of chitosan is significantly enhanced, and the production of continuous More >

  • Open Access

    PROCEEDINGS

    Cryogenic 3D Printing: A New Approach to Produce Hard Polyester-Based Tissue Engineering Scaffolds with In Situ Dual Delivery of Growth Factors and Cells

    Chong Wang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012164

    Abstract Please Creating mechanically robust tissue engineering scaffolds capable of delivering growth factors and stem cells in situ for hard tissue repair remains a significant challenge. Inspired by the spiral structure of ice cream, our group developed an advanced 3D printing technique known as cryogenic 3D printing to fabricate polyester-based scaffolds with embedded growth factors. This method utilizes water-in-oil (w/o) polyester emulsions containing growth factors as the printing ink, which is patterned onto a cryogenic substrate. The resulting scaffolds feature a hierarchically porous structure, allowing mesenchymal stem cells (MSCs) to easily attach and proliferate. Additionally, the… More >

  • Open Access

    PROCEEDINGS

    From Cell to Cell-Free Strategies: New Developments in Cartilage and Cardiac Tissue Repair

    Xiaolin Cui1, Khoon Lim2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-2, 2025, DOI:10.32604/icces.2025.011173

    Abstract 1 Introduction
    Joint and cardiovascular diseases, such as osteoarthritis (OA) and myocardial infarction (MI), pose significant clinical challenges due to their limited regenerative capacity. The key to mitigating tissue damage and preventing the progression of OA and MI is to repair or even regenerate the infarcted tissue. At present, cell-based therapy is the primary strategy for tissue repair. Delivered cells could either differentiate into functional cells or secrete paracrine signals to promote onsite cell function. Both mechanisms have demonstrated potential in cartilage and cardiac tissue repair, both preclinically and clinically. In addition to cell therapy,… More >

  • Open Access

    REVIEW

    Development and application prospect of stem cell combined with 3D printing technology for oral disease

    YIXIAN YOU1,3,#, YIHUNG LEE2,#, YUSHIN HU2, YOUHUI XU3, JOUCHEN CHEN2, WEI JIANG1, CHANGHAI LIU1, ENQIANG CHEN1, HONG TANG1, HUA ZHANG4,*, DONGBO WU1,*

    BIOCELL, Vol.49, No.1, pp. 45-59, 2025, DOI:10.32604/biocell.2024.057259 - 24 January 2025

    Abstract With organ transplantation facing many dilemmas, tissue and organ regeneration as an alternative has bright prospects. In regenerative medicine, Three-dimensional (3D) printing technology and stem cells has been widely applied to the treatment of diseases related to tissue or organ replacement in dentistry, respectively. However, there are very few studies on the combination of the two, and even fewer clinical studies have been reported in dentistry. In this review, the current oral tissue engineering in vivo and in vitro based on 3D printing and stem cell technology will be summarized, and the discussion on the development… More >

  • Open Access

    REVIEW

    Advances in micropillar arrays in cellular biomechanics detection and tissue engineering

    XUELING HE, LINLU JIN, YIXUE QIN, JIAN ZHONG, ZHI OUYANG, YE ZENG*

    BIOCELL, Vol.48, No.11, pp. 1521-1529, 2024, DOI:10.32604/biocell.2024.055410 - 07 November 2024

    Abstract Cellular biomechanical features contributed to the occurrence and development of various physiological and pathological phenomena. Micropillar arrays have emerged as an important tool for both the assessment and manipulation of cellular biomechanical characteristics. This comprehensive review provides an in-depth understanding of the fabrication methodologies of micropillar arrays and their applications in deciphering and fine-tuning cellular biomechanical properties and the innovative experimental platforms including organ-on-a-chip and organoids-on-a-chip. This review provides novel insights into the potential of micropillar technology, poised to update the landscape of stem cell research and tissue engineering. More >

  • Open Access

    REVIEW

    Understanding cell-extracellular matrix interactions for topology-guided tissue regeneration

    AAYUSHI RANDHAWA1,2, SAYAN DEB DUTTA1, KEYA GANGULY1, TEJAL V. PATIL1,2, RACHMI LUTHFIKASARI1, KI-TAEK LIM1,2,*

    BIOCELL, Vol.47, No.4, pp. 789-808, 2023, DOI:10.32604/biocell.2023.026217 - 08 March 2023

    Abstract Tissues are made up of cells and the extracellular matrix (ECM) which surrounds them. These cells and tissues are actively adaptable to enduring significant stress that occurs in daily life. This astonishing mechanical stress develops due to the interaction between the live cells and the non-living ECM. Cells in the matrix microenvironment can sense the signals and forces produced and initiate a signaling cascade that plays a crucial role in the body’s normal functioning and influences various properties of the native cells, including growth, proliferation, and differentiation. However, the matrix’s characteristic features also impact the More >

  • Open Access

    REVIEW

    Dental pulp stem cells and banking of teeth as a lifesaving therapeutic vista

    SUKUMARAN ANIL1,2,*, RAMYA RAMADOSS3, NEBU G. THOMAS4, JASMIN M. GEORGE4, VISHNUPRIYA K. SWEETY4

    BIOCELL, Vol.47, No.1, pp. 71-80, 2023, DOI:10.32604/biocell.2023.024334 - 26 September 2022

    Abstract Exfoliated deciduous or an extracted healthy adult tooth can be used to harvest, process, and cryogenically preserve dental pulp stem cells. Future stem cell-based regenerative medicine methods could benefit significantly from these mesenchymal stem cells. Teeth serve as a substantial source of mesenchymal stem cells, otherwise disposed of as medical waste. Care should be taken to store this treasure trove of stem cells. Collective responsibility of patients, dentists, and physicians is necessary to ensure that this valuable resource is not wasted and that every possible dental pulp stem cell is available for use in the More >

  • Open Access

    ARTICLE

    Construction of Customized Bio Incubator and Designing of Tailored Scaffolds for Bone Tissue Engineering from Laboratory Scale Up to Clinical Scale

    Soliman Abdalla1,2,*, Shiref Kandil2

    Journal of Renewable Materials, Vol.10, No.11, pp. 2699-2716, 2022, DOI:10.32604/jrm.2022.022334 - 29 June 2022

    Abstract In order to obtain larger, clinical-scale and practical-scale bone grafts, we have designed both tailored scaffolds and tailored bio incubator with optimal bio-production characteristics. Using DIC files to Simpleware Scan-IP (Simple-ware-exeter United Kingdom), we have digitally reconstructed segmental additive bone-tissue in order to perform images processing. Both hydroxyapatite and tannin composites have been used in order to get the final bone modules combined for retexturing of segmental bone defect. We have found that sectioning of bone segment deficiency reorganizations into well disk-shaped design permits one to standardize the cell culture and seeding protocol, to get More >

  • Open Access

    ARTICLE

    A nanostructured look of collagen apatite porosity into human mineralized collagen fibril

    FABIANO BINI1,*, ANDRADA PICA1, ANDREA MARINOZZI2, FRANCO MARINOZZI1

    BIOCELL, Vol.46, No.10, pp. 2225-2229, 2022, DOI:10.32604/biocell.2022.021150 - 13 June 2022

    Abstract Bone tissue is a hierarchical material characterized at nanoscale by the mineralized collagen fibril, a recurring structure mainly composed of apatite minerals, collagen and water. Bone nanostructure has a fundamental role in determining the mechanical behavior of the tissue and its mass transport properties. Diffusion phenomenon allows to maintain an adequate supply of metabolites in the mechanisms of bone remodeling, adaptation and repair. Several analytical and computational models have been developed to analyze and predict bone tissue behavior. However, the fine replication of the natural tissue still represents a challenge. Insights on the structural organization More >

Displaying 1-10 on page 1 of 39. Per Page