Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25)
  • Open Access

    ARTICLE

    A Study on Microstructural and Mechanical Properties of a Stir Cast Al (SiC-Mg-TiFe) Composite

    Samuel Olukayode Akinwamide1, Serge Mudinga Lemika1, Babatunde Abiodun Obadele1,3, Ojo Jeremiah Akinribide1, Bolanle Tolulope Abe2, Peter Apata Olubambi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.1, pp. 15-26, 2019, DOI:10.32604/fdmp.2019.04761

    Abstract Development of metal matrix composite is becoming widespread in most engineering applications where excellent mechanical properties are required. Mechanical and microstructural properties of aluminium reinforced with silicon carbide was investigated. Ingot of aluminium was melted in a furnace at temperature ranging between 650-700 ℃. Ferrotitanium and silicon carbide were preheated in a muffle furnace before addition to molten aluminium in a crucible furnace. Fixed proportions of magnesium, ferrotitanium and varying proportions of silicon carbide were utilized as reinforcements. Stirring was carried out manually for a minimum of 10 mins after the addition of each weight percent of silicon carbide. Resulting… More >

  • Open Access

    ARTICLE

    Early Stage of Oxidation on Titanium Surface by Reactive Molecular Dynamics Simulation

    Liang Yang1,2, Caizhuang Wang3,*, Shiwei Lin2,*, Yang Cao2, Xiaoheng Liu1

    CMC-Computers, Materials & Continua, Vol.55, No.1, pp. 177-188, 2018, DOI:10.3970/cmc.2018.055.177

    Abstract Understanding of metal oxidation is very critical to corrosion control, catalysis synthesis, and advanced materials engineering. Metal oxidation is a very complex phenomenon, with many different processes which are coupled and involved from the onset of reaction. In this work, the initial stage of oxidation on titanium surface was investigated in atomic scale by molecular dynamics (MD) simulations using a reactive force field (ReaxFF). We show that oxygen transport is the dominant process during the initial oxidation. Our simulation also demonstrate that a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Titanium… More >

  • Open Access

    ARTICLE

    Efficiency of Power Dissipation and Instability Criterion for Processing Maps in Hot Forming

    CMC-Computers, Materials & Continua, Vol.18, No.3, pp. 271-300, 2010, DOI:10.3970/cmc.2010.018.271

    Abstract The processing maps are a superimposition of iso-efficiency contour map and flow instability map, which are used to design hot working processing conditions in a wide variety of materials. In order to construct the processing maps, the efficiency of power dissipation and an instability criterion taking into account the contribution of strain and microstructure evolution are proposed based on a set of microstructure-based viscoplastic constitutive equations. In viscoplastic constitutive equations, the grain size of matrix phase and the dislocation density are taken as internal state variables. And, the material constants in present equations can be identified by a genetic algorithm… More >

  • Open Access

    ARTICLE

    Study of Deformation Mechanisms in Titanium by Interrupted Rolling and Channel Die Compression Tests

    Lei Bao1,2, Christophe Schuman1, Jean-sébastien Lecomte1, Marie-Jeanne Philippe1, Xiang Zhao2, Liang Zuo2, Claude Esling1

    CMC-Computers, Materials & Continua, Vol.15, No.2, pp. 113-128, 2010, DOI:10.3970/cmc.2010.015.113

    Abstract The mechanisms of small plastic deformation of titanium (T40) during cold rolling and channel die compression by means of "interrupted in situ" EBSD orientation measurements were studied. These interrupted EBSD orientation measurements allow to determine the rotation flow field which leads to the development of the crystallographic texture during the plastic deformation. Results show that during rolling, tension twins and compression twins occur and various glide systems are activated, the number of grains being larger with twins than with slip traces. In channel die compression, only tension twins are observed in some grains, whereas slip traces can be spotted in… More >

  • Open Access

    ARTICLE

    Finite Element Simulations of Four-holes Indirect Extrusion Processes of Seamless Tube

    Dyi-Cheng1, Syuan-Yi Syong1

    CMC-Computers, Materials & Continua, Vol.13, No.3, pp. 191-200, 2009, DOI:10.3970/cmc.2009.013.191

    Abstract Finite element simulations are performed to investigate the plastic deformation behavior of Ti-6Al-4V titanium alloy during its indirect extrusion through a four-hole die. The simulations assume the die, mandrel and container to be rigid bodies and ignore the temperature change induced during the extrusion process. Under various extrusion conditions, the present numerical analysis investigates the effective stress and profile of product at the exit. The relative influences of the friction factors, the temperature of billet and the eccentricity of four-hole displacement are systematically examined. The simulations focus specifically on the effects of the friction factor, billet temperature and eccentricity ratio… More >

Displaying 21-30 on page 3 of 25. Per Page