Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (60)
  • Open Access

    ARTICLE

    Wavelet Transform-Based Bayesian Inference Learning with Conditional Variational Autoencoder for Mitigating Injection Attack in 6G Edge Network

    Binu Sudhakaran Pillai1, Raghavendra Kulkarni2, Venkata Satya Suresh kumar Kondeti2, Surendran Rajendran3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1141-1166, 2025, DOI:10.32604/cmes.2025.070348 - 30 October 2025

    Abstract Future 6G communications will open up opportunities for innovative applications, including Cyber-Physical Systems, edge computing, supporting Industry 5.0, and digital agriculture. While automation is creating efficiencies, it can also create new cyber threats, such as vulnerabilities in trust and malicious node injection. Denial-of-Service (DoS) attacks can stop many forms of operations by overwhelming networks and systems with data noise. Current anomaly detection methods require extensive software changes and only detect static threats. Data collection is important for being accurate, but it is often a slow, tedious, and sometimes inefficient process. This paper proposes a new… More >

  • Open Access

    ARTICLE

    A Unified U-Net-Vision Mamba Model with Hierarchical Bottleneck Attention for Detection of Tomato Leaf Diseases

    Geoffry Mutiso*, John Ndia

    Journal on Artificial Intelligence, Vol.7, pp. 275-288, 2025, DOI:10.32604/jai.2025.069768 - 05 September 2025

    Abstract Tomato leaf diseases significantly reduce crop yield; therefore, early and accurate disease detection is required. Traditional detection methods are laborious and error-prone, particularly in large-scale farms, whereas existing hybrid deep learning models often face computational inefficiencies and poor generalization over diverse environmental and disease conditions. This study presents a unified U-Net-Vision Mamba Model with Hierarchical Bottleneck Attention Mechanism (U-net-Vim-HBAM), which integrates U-Net’s high-resolution segmentation, Vision Mamba’s efficient contextual processing, and a Hierarchical Bottleneck Attention Mechanism to address the challenges of disease detection accuracy, computational complexity, and efficiency in existing models. The model was trained on More >

  • Open Access

    ARTICLE

    Synergistic Effect of Zinc Oxide, Magnesium Oxide and Graphene Nanomaterials on Fusarium oxysporum-Inoculated Tomato Plants

    Alejandra Sánchez-Reyna1, Yolanda González-García2, Ángel Gabriel Alpuche-Solís3, Gregorio Cadenas-Pliego4, Adalberto Benavides-Mendoza5,6, Antonio Juárez-Maldonado6,7,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.7, pp. 2097-2116, 2025, DOI:10.32604/phyton.2025.067092 - 31 July 2025

    Abstract Tomato is an economically important crop that is susceptible to biotic and abiotic stresses, situations that negatively affect the crop cycle. Biotic stress is caused by phytopathogens such as Fusarium oxysporum f. sp. lycopersici (FOL), responsible for vascular wilt, a disease that causes economic losses of up to 100% in crops of interest. Nanomaterials represent an area of opportunity for pathogen control through stimulations that modify the plant development program, achieving greater adaptation and tolerance to stress. The aim of this study was to evaluate the antimicrobial capacity of the nanoparticles and the concentrations used in tomato… More >

  • Open Access

    REVIEW

    Strengthening Tomato Resilience: Harnessing Microbial Consortia to Overcome Biotic and Abiotic Stress

    Oumaima Benaissa1,2,3, Mohammed Taoussi1,4, Ikram Legrifi1,2, Zineb Belabess3, Abderrahim Lazraq2, Rachid Lahlali1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.5, pp. 1453-1495, 2025, DOI:10.32604/phyton.2025.064598 - 29 May 2025

    Abstract Tomato cultivation faces formidable challenges from both biotic and abiotic stressors, necessitating innovative and sustainable strategies to ensure crop resilience and yield stability. This comprehensive review delves into the evolving landscape of employing microbial consortia as a dynamic tool for the integrated management of biotic and abiotic stresses in tomato plants. The microbial consortium, comprising an intricate network of bacteria, fungi, and other beneficial microorganisms, plays a pivotal role in promoting plant health and bolstering defense mechanisms. Against biotic stressors, the consortium exhibits multifaceted actions, including the suppression of pathogenic organisms through antagonistic interactions and… More >

  • Open Access

    ARTICLE

    Plant Disease Detection and Classification Using Hybrid Model Based on Convolutional Auto Encoder and Convolutional Neural Network

    Tajinder Kumar1, Sarbjit Kaur2, Purushottam Sharma3,*, Ankita Chhikara4, Xiaochun Cheng5,*, Sachin Lalar6, Vikram Verma7

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5219-5234, 2025, DOI:10.32604/cmc.2025.062010 - 19 May 2025

    Abstract During its growth stage, the plant is exposed to various diseases. Detection and early detection of crop diseases is a major challenge in the horticulture industry. Crop infections can harm total crop yield and reduce farmers’ income if not identified early. Today’s approved method involves a professional plant pathologist to diagnose the disease by visual inspection of the afflicted plant leaves. This is an excellent use case for Community Assessment and Treatment Services (CATS) due to the lengthy manual disease diagnosis process and the accuracy of identification is directly proportional to the skills of pathologists.… More >

  • Open Access

    ARTICLE

    Evaluating Dying Efficiency and Energy Performance of a Hybrid Solar Dryer with Natural, Forced, and Hybrid Convection Modes for Tomatoes

    Sadaf Gul Unar1, Shoaib Ahmed Khatri1,*, Nayyar Hussain Mirjat1, Muhammad Faraz Arain1, Syed Rafay Ahmed Zaidi1, Laveet Kumar2

    Frontiers in Heat and Mass Transfer, Vol.23, No.2, pp. 479-505, 2025, DOI:10.32604/fhmt.2025.063937 - 25 April 2025

    Abstract This research focuses on developing innovative hybrid solar dryers that combine solar Photovoltaic (PV) and solar thermal systems for sustainable food preservation in Pakistan, addressing the country’s pressing issues of high post-harvest losses and unreliable energy sources. The proposed active hybrid solar dryer features a drying cabinet, two Direct Current (DC) fans for forced convection, and a resistive heating element powered by a 180 W solar PV panel. An energy-storing battery ensures continuous supply to the auxiliaries during periods of low solar irradiance, poor weather conditions, or nighttime. Tomatoes, a delicate and in-demand crop, were… More >

  • Open Access

    ARTICLE

    LT-YOLO: A Lightweight Network for Detecting Tomato Leaf Diseases

    Zhenyang He, Mengjun Tong*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4301-4317, 2025, DOI:10.32604/cmc.2025.060550 - 06 March 2025

    Abstract Tomato plant diseases often first manifest on the leaves, making the detection of tomato leaf diseases particularly crucial for the tomato cultivation industry. However, conventional deep learning models face challenges such as large model sizes and slow detection speeds when deployed on resource-constrained platforms and agricultural machinery. This paper proposes a lightweight model for detecting tomato leaf diseases, named LT-YOLO, based on the YOLOv8n architecture. First, we enhance the C2f module into a RepViT Block (RVB) with decoupled token and channel mixers to reduce the cost of feature extraction. Next, we incorporate a novel Efficient… More >

  • Open Access

    ARTICLE

    Effects of Chlorine-Based Fertilizers on Tomato Growth under Soilless Culture

    Fei Li1,2, Meili Ding1, Hui Yuan1, Siping Wang1, Bin Liang2,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.1, pp. 243-250, 2025, DOI:10.32604/phyton.2025.059499 - 24 January 2025

    Abstract This study investigated the effects of chlorine-based fertilizers under varying nitrogen solution concentrations in a soilless culture system. The experiment included four nitrogen solution concentration levels, with nitrogen concentrations of 6 mmol/L (C1), 12 mmol/L (C2), 18 mmol/L (C3), and 24 mmol/L (C4). Each nutrient concentration level was further divided into four chloride ion treatments (R1, R2, R3, and R4), where 100%, 60%, 33%, and 0% of the NH4+ and K+ ions were derived from NH4Cl and KCl, respectively. The length, surface area and volume of root were significantly higher by 25.3%~136.9%, 40.1%~173.1%, 27.9%~178.0%, respectively, in the… More >

  • Open Access

    ARTICLE

    Comparative Effects of Compost and Arbuscular Mycorrhizal Fungi Versus NPK on Agro-Physiological, Biochemical and Tolerance Responses of Tomatoes to Drought

    Abderrahim Boutasknit1,2,3,*, Wissal Benaffari2,3, Mohamed Anli2,3, Abdoussadeq Ouamnina2,3, Amine Assouguem4, Rachid Lahlali4,*, Abdelilah Meddich2,3,5

    Phyton-International Journal of Experimental Botany, Vol.93, No.12, pp. 3589-3616, 2024, DOI:10.32604/phyton.2024.057881 - 31 December 2024

    Abstract Drought stress (DS) and overuse of chemical fertilizers cause considerable losses in the agro-physiological as well as biochemical performance of plants. In this context, considerable effort will be required to replace chemical fertilizers (NPK) with biostimulants as an important approach to enhance the productivity and sustainability of agriculture. Here, we evaluated the effect of separating and/or combining arbuscular mycorrhizal fungi (AMF) with compost (C) in comparison to the use of NPK on the growth, physiological and biochemical of tomatoes under DS. The findings showed that DS significantly reduced the growth and physiological attributes of tomatoes.… More >

  • Open Access

    PROCEEDINGS

    Wall-Thickness Dependent Microstructure Evolution of GH4169 Thin-Walled Components Fabricated by Laser Powder Bed Fusion

    Zhancai Zhan1, Penghang Ling1, Wugui Jiang1,*, Tao Chen1, Qinghua Qin2,3, Longhui Mao1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011400

    Abstract In the intricate and multi-physical process of Laser Powder Bed Fusion (LPBF), the microstructure significantly influences the performance of the resulting components, particularly evident in the manufacturing of thin-walled structures. In this paper, a prediction model of microstructure evolution coupled with 3D cellular automaton (CA) and finite element (FE) method for thin-walled components of GH4169 fabricated by LPBF is established. In this model, the multi-layer and multi-track temperature field within the interest region of thin-walled parts is simulated by the FE method. Subsequently, the temperature history is transferred to the CA model for predicting the… More >

Displaying 1-10 on page 1 of 60. Per Page