Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7,427)
  • Open Access

    ARTICLE

    High Velocity Impact Behaviour of Layered Steel Fibre Reinforced Cementitious Composite (SFRCC) Panels

    Amar Prakash1, Srinivasan, S. M.2, Rama Mohan Rao, A.3

    CMC-Computers, Materials & Continua, Vol.42, No.1, pp. 75-102, 2014, DOI:10.3970/cmc.2014.042.075

    Abstract Behaviour of layered steel fibre reinforced cementitious composite (SFRCC) panels is studied under high velocity impact of short projectiles. The panels consist of slurry infiltrated fibre concrete (SIFCON) layers in external faces and an intermediate (core) layer of latex modified concrete (LMC) and steel wire mesh embedded in cement sand slurry. In order to minimize acoustic impedance mismatch at the interfaces, judiciously selected materials are provided in the layers with appropriate lay-up sequences. For relative evaluation of high velocity impact performances of these panels', impact experiments are conducted in controlled environment. Two most commonly used types of short projectiles having… More >

  • Open Access

    ARTICLE

    Matrix Crack Detection in Composite Plate with Spatially Random Material Properties using Fractal Dimension

    K. Umesh1, R. Ganguli1

    CMC-Computers, Materials & Continua, Vol.41, No.3, pp. 215-240, 2014, DOI:10.3970/cmc.2014.041.215

    Abstract Fractal dimension based damage detection method is investigated for a composite plate with random material properties. Composite material shows spatially varying random material properties because of complex manufacturing processes. Matrix cracks are considered as damage in the composite plate. Such cracks are often seen as the initial damage mechanism in composites under fatigue loading and also occur due to low velocity impact. Static deflection of the cantilevered composite plate with uniform loading is calculated using the finite element method. Damage detection is carried out based on sliding window fractal dimension operator using the static deflection. Two dimensional homogeneous Gaussian random… More >

  • Open Access

    ARTICLE

    Surface/interface Energy Effect on Electromechanical Responses Around a Nanosized Elliptical Inclusion under Far-field Loading at an Arbitrary Angle

    Xue-Qian Fang1,2, Hong-Wei Liu1, Yong-Mao Zhao1, Guo-Quan Nie1,1 and Jin-Xi Liu1

    CMC-Computers, Materials & Continua, Vol.40, No.2, pp. 145-164, 2014, DOI:10.3970/cmc.2014.040.145

    Abstract Electro-elastic surface/interface around nano-sized piezoelectric inclusions shows great effect on the response of piezoelectric nano-structures. In this paper, a theoretical model is proposed to examine the surface/interface effect on the electromechanical responses around a nano-sized elliptical piezoelectric inclusion embedded in an infinite piezoelectric matrix under far-field loading with an arbitrary angle, and the effect of loading angle is considered Combining the conformal mapping technique and electro-elastic surface/interface theory, a closed form solution of this problem is obtained and the interactive effect between the surface/interface and the aspect ratio of the elliptical inclusion is examined. More >

  • Open Access

    ARTICLE

    Graded Dielectric Inhomogeneous Planar Layer Radome for Aerospace Applications

    Raveendranath U. Nair, Preethi D.S, R. M. Jha

    CMC-Computers, Materials & Continua, Vol.40, No.2, pp. 131-144, 2014, DOI:10.3970/cmc.2014.040.131

    Abstract Controllable artificial dielectrics are used in the design of radomes to enhance their electromagnetic (EM) performance. The fabrication of such radome wall structures with controllable dielectric parameters seems to be an arduous task. Further even minor fluctuations of dielectric properties of radome wall due to fabrication uncertainties tend to result in drastic degradation of radome performance parameters. In the present work, a novel inhomogeneous radome with graded variation of dielectric parameters is proposed which limits the constraints on fabrication and facilitates excellent EM performance characteristics. This radome wall consists of five dielectric layers cascaded such that the middle layer has… More >

  • Open Access

    ARTICLE

    A Simple Locking-Alleviated 4-Node Mixed-Collocation Finite Element with Over-Integration, for Homogeneous or Functionally-Graded or Thick-Section Laminated Composite Beams

    Leiting Dong1, Ahmed S. El-Gizawy2, Khalid A. Juhany2, Satya N. Atluri3

    CMC-Computers, Materials & Continua, Vol.40, No.1, pp. 49-78, 2014, DOI:10.3970/cmc.2014.040.049

    Abstract In this study, a simple 4-node locking-alleviated mixed finite element (denoted as CEQ4) is developed, for the modeling of homogeneous or functionally graded or laminated thick-section composite beam structures, without using higher-order (in the thickness direction) or layer-wise zig-zag theories of composite laminates which are widely popularized in current literature. Following the work of [Dong and Atluri (2011)], the present element independently assumes a 5-parameter linearly-varying Cartesian strain field. The independently assumed Cartesian strains are related to the Cartesian strains derived from mesh-based Cartesian displacement interpolations, by exactly enforcing 5 pre-defined constraints at 5 pre-selected collocation points. The constraints are… More >

  • Open Access

    ARTICLE

    Characteristics of a Single I-shaped Slitted Zeroth-Order Resonance Mushroom Antenna based on Metamaterials

    Cherl-Hee Lee, Jonghun Lee1

    CMC-Computers, Materials & Continua, Vol.39, No.3, pp. 289-299, 2014, DOI:10.3970/cmc.2014.039.289

    Abstract The broadband design of a metamaterials-based zeroth-order resonance (ZOR) mushroom antenna with an I-shaped slit is presented and experimentally studied. The presented metamaterials-based antenna uses a unit cell based on a composite right/left handed (CRLH) transmission line and can provide a ZOR frequency. By designing the I-shaped slot resonance frequency adjacently to the ZOR frequency, the presented antenna can achieve a 10-dB bandwidth enhancement of roughly 7 times with respect to a conventional rectangular-shaped mushroom structure. More >

  • Open Access

    ARTICLE

    Effective Surface Susceptibility Models for Periodic Metafilms Within the Dipole Approximation Technique

    A.I. Dimitriadis1, N.V. Kantartzis1 and T.D. Tsiboukis1

    CMC-Computers, Materials & Continua, Vol.39, No.3, pp. 231-265, 2014, DOI:10.3970/cmc.2014.039.231

    Abstract The most important surface susceptibility models for the electromagnetic characterization of periodic metafilms, based on the dipole approximation method, are systematically analyzed in this paper. Specifically, two well-known techniques, which lead to a set of local effective surface parameters, are investigated along with a new dynamic non-local modeling algorithm. The latter formulation is properly expanded, in order to be applicable for any arbitrary periodic metafilm, irrespective of its way of excitation. The featured schemes are then directly compared toward their ability to efficiently predict the reflection and transmission properties of several lossless and lossy metafilms. Their outcomes are carefully verified… More >

  • Open Access

    ARTICLE

    A Stochastic Multi-Scale Model for Prediction of the Autogenous Shrinkage Deformations of Early-age Concrete

    S. Liu1, X. Liu2,3, Y. Yuan2, P. F. He1, H. A. Mang2,4

    CMC-Computers, Materials & Continua, Vol.39, No.2, pp. 85-112, 2014, DOI:10.3970/cmc.2014.039.085

    Abstract Autogenous shrinkage is defined as the bulk deformation of a closed, isothermal, cement-based material system, which is not subjected to external forces. It is associated with the hydration process of the cement paste. From the viewpoint of engineering practice, autogenous shrinkage deformations result in an increase of tensile stresses, which may lead to cracking of early-age concrete. Since concrete is a multi-phase composite with different material compositions and microscopic configurations at different scales, autogenous shrinkage does not only depend on the hydration of the cement paste, but also on the mechanical properties of the constituents and of their distribution. In… More >

  • Open Access

    ARTICLE

    Toughening Mechanisms in Carbon Nanotube-Reinforced Amorphous Carbon Matrix Composites

    J.B. Niu1, L.L. Li2, Q. Xu1, Z.H. Xia1,3

    CMC-Computers, Materials & Continua, Vol.38, No.1, pp. 31-41, 2013, DOI:10.3970/cmc.2013.038.031

    Abstract Crack deflection and penetration at the interface of multi-wall carbon nanotube/amorphous carbon composites were studied via molecular dynamics simulations. In-situ strength of double-wall nanotubes bridging a matrix crack was calculated under various interfacial conditions. The structure of the nanotube reinforcement -ideal multi-wall vs. multi-wall with interwall sp3 bonding - influences the interfacial sliding and crack penetration. When the nanotube/matrix interface is strong, matrix crack penetrates the outermost layer of nanotubes but it deflects within the nanotubes with certain sp3 interwall bond density, resulting in inner wall pullout. With increasing the sp3 interwall bond density, the fracture mode becomes brittle; the… More >

  • Open Access

    ARTICLE

    Broadbanding of A-sandwich Radome Using Jerusalem Cross Frequency Selective Surface

    Raveendranath U Nair1, R M Jha1

    CMC-Computers, Materials & Continua, Vol.37, No.2, pp. 109-121, 2013, DOI:10.3970/cmc.2013.037.109

    Abstract Enhancement of electromagnetic performance of A-sandwich radome using aperture-type Jerusalem cross frequency selective surface (FSS) is presented. The Jerusalem cross FSS array is embedded in the mid-plane of the core of Asandwich radome to enhance the EM performance parameters over the entire Xband. For modeling the Jerusalem cross FSS embedded radome panel and evaluation of its EM performance parameters, equivalent transmission line method in conjunction with equivalent circuit model is used. A comparative study of Jerusalem cross FSS embedded A-sandwich radome and A-sandwich radome of identical material and thickness (core and skin layers) indicate that the new wall configuration has… More >

Displaying 7351-7360 on page 736 of 7427. Per Page