Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (417)
  • Open Access

    ARTICLE

    Adaptive Handover Decision Inspired By Biological Mechanism in Vehicle Ad-hoc Networks

    Xuting Duan1,2,3, Jingyi Wei1,2,3, Daxin Tian1,2,3,*, Jianshan Zhou1,2,3,4, Haiying Xia5, Xin Li6, Kunxian Zheng1,2,3

    CMC-Computers, Materials & Continua, Vol.61, No.3, pp. 1117-1128, 2019, DOI:10.32604/cmc.2019.05578

    Abstract In vehicle ad-hoc networks (VANETs), the proliferation of wireless communication will give rise to the heterogeneous access environment where network selection becomes significant. Motivated by the self-adaptive paradigm of cellular attractors, this paper regards an individual communication as a cell, so that we can apply the revised attractor selection model to induce each connected vehicle. Aiming at improving the Quality of Service (QoS), we presented the bio-inspired handover decision-making mechanism. In addition, we employ the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) for any vehicle to choose an access network. This paper proposes a novel framework… More >

  • Open Access

    ABSTRACT

    Effects of Muscle Fatigue on the Kinect Control of Free Throw in the Wheelchair Basketball Sport

    Hsiang-Wen Huang1, Ting-Wei Kuo1, Chi-Long Lee1, Yan-Ting Lin1, Yan-Ying Ju2, Chih-Hsiu Cheng1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 113-115, 2019, DOI:10.32604/mcb.2019.07509

    Abstract Wheelchair basketball is mainly designed for people who are physically challenged with permanent lower body disabilities. Free throw execution is one of the basic skills and could represent the preferred shooting mechanics so as to examine the overall shooting mechanics in basketball players. It requires the body to act as a kinetic chain to summate energy from the wheelchair to the upper extremity for the coordinated movements. Researchers have shown that the kinetic chain of the wheelchair basketball athletes could be affected by the kinematic parameters such as the release velocity and shooting angle [1-3]. The goal of this study… More >

  • Open Access

    ARTICLE

    Two-dimensional Numerical Estimation of Stress Intensity Factors and Crack Propagation in Linear Elastic Analysis

    Abdulnaser M. Alshoaibi1,2, M. S. A. Hadi2, A. K. Ariffin2

    Structural Durability & Health Monitoring, Vol.3, No.1, pp. 15-28, 2007, DOI:10.3970/sdhm.2007.003.015

    Abstract An adaptive finite element method is employed to analyze two-dimensional linear elastic fracture problems. The mesh is generated by the advancing front method and the norm stress error is taken as a posteriori error estimator for the h-type adaptive refinement. The stress intensity factors are estimated by a displacement extrapolation technique. The near crack tip displacements used are obtained from specific nodes of natural six-noded quarter-point elements which are generated around the crack tip defined by the user. The crack growth and its direction are determined by the calculated stress intensity factors as the maximum circumference theory is also been… More >

  • Open Access

    ARTICLE

    Reliable Fracture Analysis of OF 2-D Crack Problems Using NI-MVCCI Technique

    G.S. Palani1, Nagesh R. Iyer1, B. Dattaguru2

    Structural Durability & Health Monitoring, Vol.1, No.2, pp. 107-120, 2005, DOI:10.3970/sdhm.2005.001.107

    Abstract A posteriori error estimation and adaptive refinement technique for 2-D/3-D crack problems is the state-of-the-art. In this paper a new a posteriori error estimator based on strain energy release rate (SERR) or stress intensity factor (SIF) at the crack tip region has been proposed and used along with the stress based error estimator for reliable fracture analysis of 2-D crack problems. The proposed a posteriori error estimator is called the K-S error estimator. Further, h-adaptive mesh refinement strategy which can be used with K-S error estimator has been proposed for fracture analysis of 2-D crack problems. The performance of the… More >

  • Open Access

    ARTICLE

    Dynamic Resource Scheduling in Emergency Environment

    Yuankun Yan1,*, Yan Kong1, Zhangjie Fu1,2

    Journal of Information Hiding and Privacy Protection, Vol.1, No.3, pp. 143-155, 2019, DOI:10.32604/jihpp.2019.07772

    Abstract Nowadays, emergency accidents could happen at any time. The accidents occur unpredictably and the accidents requirements are diversely. The accidents happen in a dynamic environment and the resource should be cooperative to solve the accidents. Most methods are focusing on minimizing the casualties and property losses in a static environment. However, they are lack in considering the dynamic and unpredictable event handling. In this paper, we propose a representative environmental model in representation of emergency and dynamic resource allocation model, and an adaptive mathematical model based on Genetic Algorithm (GA) to generate an optimal set of solution domain. The experimental… More >

  • Open Access

    ARTICLE

    An Iterative and Adaptive Lie-Group Method for Solving the Calderón Inverse Problem

    Chein-Shan Liu1, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.64, No.3, pp. 299-326, 2010, DOI:10.3970/cmes.2010.064.299

    Abstract We solve the Calderón inverse conductivity problem [Calderón (1980, 2006)], for an elliptic type equation in a rectangular plane domain, to recover an unknown conductivity function inside the domain, from the over-specified Cauchy data on the bottom of the rectangle. The Calderón inverse problem exhibitsthree-fold simultaneous difficulties: ill-posedness of the inverse Cauchy problem, ill-posedness of the parameter identification, and no information inside the domain being available on the impedance function. In order to solve this problem, we discretize the whole domain into many sub-domains of finite strips, each with a small height. Thus the Calderón inverse problem is reduced to… More >

  • Open Access

    ARTICLE

    Modeling the Spike Response for Adaptive Fuzzy Spiking Neurons with Application to a Fuzzy XOR

    A. M. E. Ramírez-Mendoza1

    CMES-Computer Modeling in Engineering & Sciences, Vol.115, No.3, pp. 295-311, 2018, DOI: 10.3970/cmes.2018.00239

    Abstract A spike response model (SRM) based on the spikes generator circuit (SGC) of adaptive fuzzy spiking neurons (AFSNs) is developed. The SRM is simulated in MatlabTM environment. The proposed model is applied to a configuration of a fuzzy exclusive or (fuzzy XOR) operator, as an illustrative example. A description of the comparison of AFSNs with other similar methods is given. The novel method of the AFSNs is used to determine the value of the weights or parameters of the fuzzy XOR, first with dynamic weights or self-tuning parameters that adapt continuously, then with fixed weights obtained after training, finally with… More >

  • Open Access

    ABSTRACT

    Dynamic Strain Sensing Using Adaptive Fiber Bragg Grating Sensors

    Yan-Jin Zhu, Yinian Zhu, Li Hui, Sridhar Krishnaswamy

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.1, pp. 29-30, 2011, DOI:10.3970/icces.2011.020.029

    Abstract Invited Lecture

    Prof. Sridhar Krishnaswamy

    Northwestern University, USA More >

  • Open Access

    ABSTRACT

    A POD Coupled Adaptive DEIM (POD-ADEIM) Reduced-Order Model for Incompressible Multiphase Flow in Porous Media

    Jingfa Li1,2, Shuyu Sun2,*, Bo Yu1, Yang Liu2, Tao Zhang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.3, pp. 141-142, 2019, DOI:10.32604/icces.2019.04721

    Abstract The multiphase fluid flow in porous media is one of the most fundamental phenomena in various physical processes, such as oil/gas flow in reservoir, subsurface contamination dispersion, chemical separation, etc. Due to its importance, the efficient and accurate solution and prediction of multiphase flow in porous media is highly required in engineering applications and mechanism studies, which has been a research hot spot with increasing interest in recent years. However, the strong nonlinearity implicated in the multiphase flow model has brought great challenges for the computation and analysis. In addition, the permeability in Darcy-type pressure equation is always represented as… More >

  • Open Access

    ABSTRACT

    A Framework for Parallel Adaptive FEM Computations with Dynamic Load Balancing

    Z. Bittnar1, B. Patzák1, D. Rypl1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.13, No.3, pp. 55-56, 2009, DOI:10.3970/icces.2009.013.055

    Abstract This paper deals with the design of framework for adaptive FEM analysis with dynamic load balancing in nondedicated parallel cluster computing environments. It describes in detail the structure and design of individual components of the framework.
    The application of adaptivity paradigm to engineering problems results in computationally very demanding analysis in terms of both computational time and computer resources (memory, disk space, etc.). These demands can be alleviated by performing the analysis in a parallel computing environment. Typical parallel application decreases the demands on memory and other resources by spreading the task over several mutually interconnected computers and speeds… More >

Displaying 331-340 on page 34 of 417. Per Page