Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (498)
  • Open Access

    ARTICLE

    Adaptive Object Tracking Discriminate Model for Multi-Camera Panorama Surveillance in Airport Apron

    Dequan Guo1, Qingshuai Yang2, Yu-Dong Zhang3, Gexiang Zhang1, Ming Zhu1, Jianying Yuan1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 191-205, 2021, DOI:10.32604/cmes.2021.016347 - 24 August 2021

    Abstract Autonomous intelligence plays a significant role in aviation security. Since most aviation accidents occur in the take-off and landing stage, accurate tracking of moving object in airport apron will be a vital approach to ensure the operation of the aircraft safely. In this study, an adaptive object tracking method based on a discriminant is proposed in multi-camera panorama surveillance of large-scale airport apron. Firstly, based on channels of color histogram, the pre-estimated object probability map is employed to reduce searching computation, and the optimization of the disturbance suppression options can make good resistance to similar More >

  • Open Access

    ARTICLE

    SmartCrawler: A Three-Stage Ranking Based Web Crawler for Harvesting Hidden Web Sources

    Sawroop Kaur1, Aman Singh1,*, G. Geetha2, Mehedi Masud3, Mohammed A. Alzain4

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 2933-2948, 2021, DOI:10.32604/cmc.2021.019030 - 24 August 2021

    Abstract Web crawlers have evolved from performing a meagre task of collecting statistics, security testing, web indexing and numerous other examples. The size and dynamism of the web are making crawling an interesting and challenging task. Researchers have tackled various issues and challenges related to web crawling. One such issue is efficiently discovering hidden web data. Web crawler’s inability to work with form-based data, lack of benchmarks and standards for both performance measures and datasets for evaluation of the web crawlers make it still an immature research domain. The applications like vertical portals and data integration… More >

  • Open Access

    ARTICLE

    Using DEMATEL for Contextual Learner Modeling in Personalized and Ubiquitous Learning

    Saurabh Pal1, Pijush Kanti Dutta Pramanik1, Musleh Alsulami2, Anand Nayyar3,*, Mohammad Zarour4, Prasenjit Choudhury1

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3981-4001, 2021, DOI:10.32604/cmc.2021.017966 - 24 August 2021

    Abstract With the popularity of e-learning, personalization and ubiquity have become important aspects of online learning. To make learning more personalized and ubiquitous, we propose a learner model for a query-based personalized learning recommendation system. Several contextual attributes characterize a learner, but considering all of them is costly for a ubiquitous learning system. In this paper, a set of optimal intrinsic and extrinsic contexts of a learner are identified for learner modeling. A total of 208 students are surveyed. DEMATEL (Decision Making Trial and Evaluation Laboratory) technique is used to establish the validity and importance of More >

  • Open Access

    ARTICLE

    Image Denoising Using a Nonlinear Pixel-Likeness Weighted-Frame Technique

    P. Vinayagam1,*, P. Anandan2, N. Kumaratharan3

    Intelligent Automation & Soft Computing, Vol.30, No.3, pp. 869-879, 2021, DOI:10.32604/iasc.2021.016761 - 20 August 2021

    Abstract Recent advances in the development of image denoising applications for eliminating the various sources of noise in digital images have employed hardware platforms based on field programmable gate arrays for attaining speed and efficiency, which are essential factors in real-time applications. However, image denoising providing for maximum denoising performance, speed, and efficiency on these platforms is subject to constant innovation. To this end, the present work proposes a high-throughput fixed-point adaptive edge noise filter architecture to denoise digital images with additive white Gaussian noise in realtime using a nonlinear modified pixel-likeness weighted-frame technique. The proposed More >

  • Open Access

    ARTICLE

    AAP4All: An Adaptive Auto Parallelization of Serial Code for HPC Systems

    M. Usman Ashraf1,*, Fathy Alburaei Eassa2, Leon J. Osterweil3, Aiiad Ahmad Albeshri2, Abdullah Algarni2, Iqra Ilyas4

    Intelligent Automation & Soft Computing, Vol.30, No.2, pp. 615-639, 2021, DOI:10.32604/iasc.2021.019044 - 11 August 2021

    Abstract High Performance Computing (HPC) technologies are emphasizing to increase the system performance across many disciplines. The primary challenge in HPC systems is how to achieve massive performance by minimum power consumption. However, the modern HPC systems are configured by adding the powerful and energy efficient multi-cores/many-cores parallel computing devices such as GPUs, MIC, and FPGA etc. Due to increasing the complexity of one chip many-cores/multi-cores systems, only well-balanced and optimized parallel programming technique is the solution to provide substantial increase in performance under power consumption limitations. Conventionally, the researchers face various barriers while parallelizing their… More >

  • Open Access

    ARTICLE

    Adaptive Multi-Scale HyperNet with Bi-Direction Residual Attention Module for Scene Text Detection

    Junjie Qu, Jin Liu*, Chao Yu

    Journal of Information Hiding and Privacy Protection, Vol.3, No.2, pp. 83-89, 2021, DOI:10.32604/jihpp.2021.017181 - 30 July 2021

    Abstract Scene text detection is an important step in the scene text reading system. There are still two problems during the existing text detection methods: (1) The small receptive of the convolutional layer in text detection is not sufficiently sensitive to the target area in the image; (2) The deep receptive of the convolutional layer in text detection lose a lot of spatial feature information. Therefore, detecting scene text remains a challenging issue. In this work, we design an effective text detector named Adaptive Multi-Scale HyperNet (AMSHN) to improve texts detection performance. Specifically, AMSHN enhances the More >

  • Open Access

    ARTICLE

    Main Factor Selection Algorithm and Stability Analysis of Regional FDI Statistics

    Juan Huang1, Bifang Zhou1, Huajun Huang2,*, Dingwen Qing1, Neal N. Xiong3

    Intelligent Automation & Soft Computing, Vol.30, No.1, pp. 303-318, 2021, DOI:10.32604/iasc.2021.016953 - 26 July 2021

    Abstract There are various influencing factors in regional FDI (foreign direct investment) and it is difficult to identify the main influencing factors. For this reason, a main factor selection algorithm is proposed in this article for the main factors affecting regional FDI statistics by analyzing the regional economic characteristics and the possible influencing factors in the regional FDI. Then, an example is used to illustrate its effectiveness and its stability. Firstly, the characteristics of regional economy and the regional FDI data are introduced to develop the main factor selection algorithm based on the adaptive Lasso problem… More >

  • Open Access

    ARTICLE

    Adaptive Error Curve Learning Ensemble Model for Improving Energy Consumption Forecasting

    Prince Waqas Khan, Yung-Cheol Byun*

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 1893-1913, 2021, DOI:10.32604/cmc.2021.018523 - 21 July 2021

    Abstract Despite the advancement within the last decades in the field of smart grids, energy consumption forecasting utilizing the metrological features is still challenging. This paper proposes a genetic algorithm-based adaptive error curve learning ensemble (GA-ECLE) model. The proposed technique copes with the stochastic variations of improving energy consumption forecasting using a machine learning-based ensembled approach. A modified ensemble model based on a utilizing error of model as a feature is used to improve the forecast accuracy. This approach combines three models, namely CatBoost (CB), Gradient Boost (GB), and Multilayer Perceptron (MLP). The ensembled CB-GB-MLP model’s… More >

  • Open Access

    ARTICLE

    Diagnosis of Neem Leaf Diseases Using Fuzzy-HOBINM and ANFIS Algorithms

    K. K. Thyagharajan, I. Kiruba Raji*

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2061-2076, 2021, DOI:10.32604/cmc.2021.017591 - 21 July 2021

    Abstract This paper proposes an approach to detecting diseases in neem leaf that uses a Fuzzy-Higher Order Biologically Inspired Neuron Model (F-HOBINM) and adaptive neuro classifier (ANFIS). India exports USD 0.28-million worth of neem leaf to the UK, USA, UAE, and Europe in the form of dried leaves and powder, both of which help reduce diabetes-related issues, cardiovascular problems, and eye disorders. Diagnosing neem leaf disease is difficult through visual interpretation, owing to similarity in their color and texture patterns. The most common diseases include bacterial blight, Colletotrichum and Alternaria leaf spot, blight, damping-off, powdery mildew,… More >

  • Open Access

    ARTICLE

    An Adaptive Lasso Grey Model for Regional FDI Statistics Prediction

    Juan Huang1, Bifang Zhou1, Huajun Huang2,*, Jianjiang Liu1, Neal N. Xiong3

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2111-2121, 2021, DOI:10.32604/cmc.2021.016770 - 21 July 2021

    Abstract To overcome the deficiency of traditional mathematical statistics methods, an adaptive Lasso grey model algorithm for regional FDI (foreign direct investment) prediction is proposed in this paper, and its validity is analyzed. Firstly, the characteristics of the FDI data in six provinces of Central China are generalized, and the mixture model's constituent variables of the Lasso grey problem as well as the grey model are defined. Next, based on the influencing factors of regional FDI statistics (mean values of regional FDI and median values of regional FDI), an adaptive Lasso grey model algorithm for regional… More >

Displaying 331-340 on page 34 of 498. Per Page