Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (106)
  • Open Access

    ARTICLE

    Recurrent Autoencoder Ensembles for Brake Operating Unit Anomaly Detection on Metro Vehicles

    Jaeyong Kang1, Chul-Su Kim2, Jeong Won Kang3, Jeonghwan Gwak1,4,5,6,*

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1-14, 2022, DOI:10.32604/cmc.2022.023641

    Abstract The anomaly detection of the brake operating unit (BOU) in the brake systems on metro vehicle is critical for the safety and reliability of the trains. On the other hand, current periodic inspection and maintenance are unable to detect anomalies in an early stage. Also, building an accurate and stable system for detecting anomalies is extremely difficult. Therefore, we present an efficient model that use an ensemble of recurrent autoencoders to accurately detect the BOU abnormalities of metro trains. This is the first proposal to employ an ensemble deep learning technique to detect BOU abnormalities… More >

  • Open Access

    ARTICLE

    Two-Dimensional Projection-Based Wireless Intrusion Classification Using Lightweight EfficientNet

    Muhamad Erza Aminanto1,2,*, Ibnu Rifqi Purbomukti3, Harry Chandra2, Kwangjo Kim4

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5301-5314, 2022, DOI:10.32604/cmc.2022.026749

    Abstract Internet of Things (IoT) networks leverage wireless communication protocols, which adversaries can exploit. Impersonation attacks, injection attacks, and flooding are several examples of different attacks existing in Wi-Fi networks. Intrusion Detection System (IDS) became one solution to distinguish those attacks from benign traffic. Deep learning techniques have been intensively utilized to classify the attacks. However, the main issue of utilizing deep learning models is projecting the data, notably tabular data, into an image. This study proposes a novel projection from wireless network attacks data into a grid-based image for feeding one of the Convolutional Neural… More >

  • Open Access

    ARTICLE

    Improving Method of Anomaly Detection Performance for Industrial IoT Environment

    Junwon Kim1, Jiho Shin2, Ki-Woong Park3, Jung Taek Seo4,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5377-5394, 2022, DOI:10.32604/cmc.2022.026619

    Abstract Industrial Control System (ICS), which is based on Industrial IoT (IIoT), has an intelligent mobile environment that supports various mobility, but there is a limit to relying only on the physical security of the ICS environment. Due to various threat factors that can disrupt the workflow of the IIoT, machine learning-based anomaly detection technologies are being presented; it is also essential to study for increasing detection performance to minimize model errors for promoting stable ICS operation. In this paper, we established the requirements for improving the anomaly detection performance in the IIoT-based ICS environment by… More >

  • Open Access

    ARTICLE

    Bayesian Feed Forward Neural Network-Based Efficient Anomaly Detection from Surveillance Videos

    M. Murugesan*, S. Thilagamani

    Intelligent Automation & Soft Computing, Vol.34, No.1, pp. 389-405, 2022, DOI:10.32604/iasc.2022.024641

    Abstract Automatic anomaly activity detection is difficult in video surveillance applications due to variations in size, type, shape, and objects’ location. The traditional anomaly detection and classification methods may affect the overall segmentation accuracy. It requires the working groups to judge their constant attention if the captured activities are anomalous or suspicious. Therefore, this defect creates the need to automate this process with high accuracy. In addition to being extraordinary or questionable, the display does not contain the necessary recording frame and activity standard to help the quick judgment of the parts’ specialized action. Therefore, to… More >

  • Open Access

    ARTICLE

    An Efficient Intrusion Detection Framework in Software-Defined Networking for Cybersecurity Applications

    Ghalib H. Alshammri1,2, Amani K. Samha3, Ezz El-Din Hemdan4, Mohammed Amoon1,4, Walid El-Shafai5,6,*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3529-3548, 2022, DOI:10.32604/cmc.2022.025262

    Abstract Network management and multimedia data mining techniques have a great interest in analyzing and improving the network traffic process. In recent times, the most complex task in Software Defined Network (SDN) is security, which is based on a centralized, programmable controller. Therefore, monitoring network traffic is significant for identifying and revealing intrusion abnormalities in the SDN environment. Consequently, this paper provides an extensive analysis and investigation of the NSL-KDD dataset using five different clustering algorithms: K-means, Farthest First, Canopy, Density-based algorithm, and Exception-maximization (EM), using the Waikato Environment for Knowledge Analysis (WEKA) software to compare… More >

  • Open Access

    ARTICLE

    Multi Chunk Learning Based Auto Encoder for Video Anomaly Detection

    Xiaosha Qi1, Genlin Ji2,*, Jie Zhang2, Bo Sheng3

    Intelligent Automation & Soft Computing, Vol.33, No.3, pp. 1861-1875, 2022, DOI:10.32604/iasc.2022.027182

    Abstract Video anomaly detection is essential to distinguish abnormal events in large volumes of surveillance video and can benefit many fields such as traffic management, public security and failure detection. However, traditional video anomaly detection methods are unable to accurately detect and locate abnormal events in real scenarios, while existing deep learning methods are likely to omit important information when extracting features. In order to avoid omitting important features and improve the accuracy of abnormal event detection and localization, this paper proposes a novel method called Multi Chunk Learning based Skip Connected Convolutional Auto Encoder (MCSCAE).… More >

  • Open Access

    ARTICLE

    Anomaly Detection for Internet of Things Cyberattacks

    Manal Alanazi*, Ahamed Aljuhani

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 261-279, 2022, DOI:10.32604/cmc.2022.024496

    Abstract The Internet of Things (IoT) has been deployed in diverse critical sectors with the aim of improving quality of service and facilitating human lives. The IoT revolution has redefined digital services in different domains by improving efficiency, productivity, and cost-effectiveness. Many service providers have adapted IoT systems or plan to integrate them as integral parts of their systems’ operation; however, IoT security issues remain a significant challenge. To minimize the risk of cyberattacks on IoT networks, anomaly detection based on machine learning can be an effective security solution to overcome a wide range of IoT… More >

  • Open Access

    ARTICLE

    An Adaptive Classifier Based Approach for Crowd Anomaly Detection

    Sofia Nishath, P. S. Nithya Darisini*

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 349-364, 2022, DOI:10.32604/cmc.2022.023935

    Abstract Crowd Anomaly Detection has become a challenge in intelligent video surveillance system and security. Intelligent video surveillance systems make extensive use of data mining, machine learning and deep learning methods. In this paper a novel approach is proposed to identify abnormal occurrences in crowded situations using deep learning. In this approach, Adaptive GoogleNet Neural Network Classifier with Multi-Objective Whale Optimization Algorithm are applied to predict the abnormal video frames in the crowded scenes. We use multiple instance learning (MIL) to dynamically develop a deep anomalous ranking framework. This technique predicts higher anomalous values for abnormal More >

  • Open Access

    ARTICLE

    Ensemble Deep Learning Models for Mitigating DDoS Attack in Software-Defined Network

    Fatmah Alanazi*, Kamal Jambi, Fathy Eassa, Maher Khemakhem, Abdullah Basuhail, Khalid Alsubhi

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 923-938, 2022, DOI:10.32604/iasc.2022.024668

    Abstract Software-defined network (SDN) is an enabling technology that meets the demand of dynamic, adaptable, and manageable networking architecture for the future. In contrast to the traditional networks that are based on a distributed control plane, the control plane of SDN is based on a centralized architecture. As a result, SDNs are susceptible to critical cyber attacks that exploit the single point of failure. A distributed denial of service (DDoS) attack is one of the most crucial and risky attacks, targeting the SDN controller and disrupting its services. Several researchers have proposed signature-based DDoS mitigation and… More >

  • Open Access

    ARTICLE

    Research on Power Consumption Anomaly Detection Based on Fuzzy Clustering and Trend Judgment

    Wei Xiong1,2, Xianshan Li1,2,*, Yu Zou3, Shiwei Su1,2, Li Zhi1,2

    Energy Engineering, Vol.119, No.2, pp. 755-765, 2022, DOI:10.32604/ee.2022.018009

    Abstract Among the end-users of the power grid, especially in the rural power grid, there are a large number of users and the situation is complex. In this complex situation, there are more leakage caused by insulation damage and a small number of users stealing electricity. Maintenance staff will take a long time to determine the location of the abnormal user meter box. In view of this situation, the method of subjective fuzzy clustering and quartile difference is adopted to determine the partition threshold. The power consumption data of end-users are divided into three regions: high, More >

Displaying 61-70 on page 7 of 106. Per Page