Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access


    Two-Layer Information Granulation: Mapping-Equivalence Neighborhood Rough Set and Its Attribute Reduction

    Changshun Liu1, Yan Liu1, Jingjing Song1,*, Taihua Xu1,2

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2059-2075, 2023, DOI:10.32604/iasc.2023.039592

    Abstract Attribute reduction, as one of the essential applications of the rough set, has attracted extensive attention from scholars. Information granulation is a key step of attribute reduction, and its efficiency has a significant impact on the overall efficiency of attribute reduction. The information granulation of the existing neighborhood rough set models is usually a single layer, and the construction of each information granule needs to search all the samples in the universe, which is inefficient. To fill such gap, a new neighborhood rough set model is proposed, which aims to improve the efficiency of attribute reduction by means of two-layer… More >

  • Open Access


    Fusing Supervised and Unsupervised Measures for Attribute Reduction

    Tianshun Xing, Jianjun Chen*, Taihua Xu, Yan Fan

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 561-581, 2023, DOI:10.32604/iasc.2023.037874

    Abstract It is well-known that attribute reduction is a crucial action of rough set. The significant characteristic of attribute reduction is that it can reduce the dimensions of data with clear semantic explanations. Normally, the learning performance of attributes in derived reduct is much more crucial. Since related measures of rough set dominate the whole process of identifying qualified attributes and deriving reduct, those measures may have a direct impact on the performance of selected attributes in reduct. However, most previous researches about attribute reduction take measures related to either supervised perspective or unsupervised perspective, which are insufficient to identify attributes… More >

  • Open Access


    Attribute Reduction for Information Systems via Strength of Rules and Similarity Matrix

    Mohsen Eid1, Tamer Medhat2,*, Manal E. Ali3

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1531-1544, 2023, DOI:10.32604/csse.2023.031745

    Abstract An information system is a type of knowledge representation, and attribute reduction is crucial in big data, machine learning, data mining, and intelligent systems. There are several ways for solving attribute reduction problems, but they all require a common categorization. The selection of features in most scientific studies is a challenge for the researcher. When working with huge datasets, selecting all available attributes is not an option because it frequently complicates the study and decreases performance. On the other side, neglecting some attributes might jeopardize data accuracy. In this case, rough set theory provides a useful approach for identifying superfluous… More >

  • Open Access


    Outlier Detection of Mixed Data Based on Neighborhood Combinatorial Entropy

    Lina Wang1,2,*, Qixiang Zhang1, Xiling Niu1, Yongjun Ren3, Jinyue Xia4

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 1765-1781, 2021, DOI:10.32604/cmc.2021.017516

    Abstract Outlier detection is a key research area in data mining technologies, as outlier detection can identify data inconsistent within a data set. Outlier detection aims to find an abnormal data size from a large data size and has been applied in many fields including fraud detection, network intrusion detection, disaster prediction, medical diagnosis, public security, and image processing. While outlier detection has been widely applied in real systems, its effectiveness is challenged by higher dimensions and redundant data attributes, leading to detection errors and complicated calculations. The prevalence of mixed data is a current issue for outlier detection algorithms. An… More >

Displaying 1-10 on page 1 of 4. Per Page